wxWindows 2.2: A portable C++ and Python GUI toolkit

Julian Smart, Robert Roebling, Vadim Zeitlin, Robin Dunn, et al

November 12th 2000

Contents

Chapter 1 Copyright NOTICEviiiiiiiiiiiiiieieieie et Xiv
Chapter 2 INTrOAUCTIONuuieiiiiiiiiiieieeeeee ettt e e eeeeeeeseseeeseeeeeees 1
What iS WXWINAOWS? ... 1
Why another cross-platform development tool?...........cooooiiiii i, 1
Changes frOM VEISION L.XX c.ciiiiiiiiiiiiiiiiiiiiiii i 3
Changes from VEIrSION 2.0.......cciiiiiiiiiiiii 4
WXWINAOWS FEOUITEIMENTS ... 4
Availability and location of WXWINAOWScooiiiiiiiiiee e 5
ACKNOWIEAGMENTS ..o 5
Chapter 3 Multi-platform development with wxWindows...........ccccccceeeeeeeeene. 7
INCIUE fIlES e 7
LIBraries ..o 7
CONFIGUIALION ...t 8
MAKETIES ... 8
WINAOWS-SPECITIC filES ... 9
Allocating and deleting WXWiIiNndoWS ODJECEScoooviiiiiii 9
ArChiteCtUre dEPENUENCY ... 10
Conditional COMPIIALION..........oviiiiiiiiiii 11
G ISSUBS ittt 11
File Nandling.......coooo i 12
Chapter 4 Programming Strat@giesuuuueeeeerieereiiiiiiieiiereiieeeeeeeeeeeeeeeeeeeee 13
Strategies for reducing programming EITOFSccuiiiiiiiiiiiiiiii 13
Strategies for Portability ... 13
Strategies for debUGQING.........ooiiiiiiiii 14
Chapter 5 Alphabetical class referencecceeevveeiiiiiiiiiiiiiiiiiiiiieeeeiieeieee 16
WXACCEIEIALOTENTIY ..o 16
WXACCEIEIALOI TADIE ... 17
WXACHVAIEEVENT ... 20
1122 A o R 21
VUXATTELY -ttt ettt e ettt oo ettt e e e e oo e e e ettt e e e e e e e e e et e e e e e e e et et e e n e neeeeeean 32
WXATTAY STING oo 44
WXAUTOMALIONODECT. ..o 50
2= 1 1 1= T o TP 54
WXBIEMAPHEANAIET 66

CONTENTS

WXBIEMAPBULION ... 70
WXBIIMAPDAtAODIECT ... 75
(V22 Lo o] 1o 1V = V1o F= Lo PP 77
JT2(2 Lo T | TS AV [o F= 1o) PPN 77
JT2 (2 10D .= PP 77
1722 1 o PPN 80
LT 22] 1 PN 86
WXBUSYCUISON ...ttt ettt e ettt e et e et et e e e b s r e e ettt e e nnnae s s e eeeeeenn 88
WXBUSYINTO e 89
1717224 = 10 11 o o R 89
WXBUTEredINDUESTIIEAM ... 92
WXBUTEredOULPULSTIEAIM. ... 93
WXCAlCUIAtELAYOULEVENT. ... 94
1T 2 @F= 11T o = 1 4 1 PP 95
2Oz 1T a0 F= T = (= 2 1 1 PR 101
LT 2Oz 11T a0 F= T =T o | R 105
12O g 105
10 (@ =T o 1q =0) SRR 108
10O 1= o SIS 1 20) 111
1T o Lo = 113
1Y@ = TS 1 o 119
1T L2 (@ 1= 014 P 121
WXCHIPDOAIT ... 121
10 (@ 01T =T =T o | PP 125
10 (@ Lo | 1= == =T PR 127
172 @o] [T PP 136
12 (@do] 011 I | - R 139
[0 (@o] (01U] B = L= o =] TR 141
WXCOIOUIDIAIOQ ... 142
10 (@] 1] oo =T) G 144
1T2 (@ 1] 110> T o PP 151
10 @do] =g o | =T o | PR 153
WXCOMMANAPTOCESSON ... vvteiiieeeeeeettie e s e e e et e ettt e s e e e e et e eatta s e e e e eeeeeessanaaaeeeeeeesssnnaaaeeeeaenes 158
122 (@ o 11T o P 161
WXCONTIGBASE ... 162
172 (@ 1 o S 177
WXCOUNTINGOULPULSTIEAIM ... 178
1Y@ [>T T= o 1o o R 179
V(@ g for= 1 IST=Tox 1 o]]I Yo 2= 180
1117221 o] 1 VP 181

CONTENTS

WXCUSTOMDATAODJECT ... 182
17121 0 =0 P 184
WXDALADASE. ...t e e et aaaaaan 188
{2 == o] = P 195
WXDATAODJECT ... 197
WXDataObhJECICOMPOSITE ... 201
WXDAtAOD ECISIMPIE L. 202
WXDAAINPULSTIEAIM ... e e e e e e e e e e e e e e eenns 203
WXDAtAOULIPULSTIEAMeeeiiiii ettt e e e e e e e e e e en e r e e e e e eenes 205
1TLT2 I = P 207
WXDBEESPAN ...ttt a e e e e eean 215
1T 2B = 1 (= T TP 215
wXDate TImeHONdaYAUtNOTIYoooe oo 243
WXDAIETIMEWOIKDAYS ... 243
1725] o PP 244
172 o T o | | P 267
172 o T o | o PP 267
1720 o 1 | R 267
172 1 1= o = PP 268
1T 2B o I 1= o] =1 o R 282
17172 L 282
1T 2] 3T 1 =T o | P 300
JT0 {1 T @ o] o 1Yo 1o o P 301
(BT] YT o P 305
WXDEDUGCONTEXL ... 306
WXDEDUGSIIEAMBUT ... 312
WXDHBUIOG oo 312
WXDIAIUPEVENT ... 320
WXDIAIUPMEBNAGET ... 321
1 325
WXDIIDIAIOQ - 327
1T 0] |1 e > Vo [330
1T0{ B o Yo @ 11 (o | > o T 332
WXDOCMEBINAGET ...ttt ettt e ettt e e e e et e e e e e et e e e e e eene 334
L0 o Tod 1Y/ (O o T1 o | = T o 1= 343
WXDOCMDIPAr@NTFTAMIE. ... e e e e et e e e e e e e e e eaaeeeeeens 345
(T LeTod = T =] 11 = o = P 346
WXDOCT EMPIALE ... 348
17172 d I Lo Tod 1 4 1= o | P 353
WXDIAGIMEBIGE ..ttt e a e e e e eene 361

CONTENTS

WXDIOPFIIESEVENT. ... 366
WXDIOPSOUICE ...ttt ettt ettt e e e e et e e e r e e e e e e e ent b aeeeeeeenes 368
LoD (o] o 1= T [PP PRPPPPPPPN 370
WXENCOAINGCONVEITET ... 373
WXEFBSEEVENL ... e e e e e e ene 376
WXEVEINT L. e ettt e e e e e e eene 377
WXEVEHANAIET ... 380
12 = o ST PTTITR PRSPPI 388
WXEXPIDALADASEo 395
XL e 398
WXl e 404
WXFIIEDATAODIECT ... 409
WXFTIEDIAIOQ oo 410
WX E DI 0P TAIGET ..o 414
WXFIIEHISTOY ... 416
WX RINPUESTIEAIM ... 418
WXFIIEOULPULSTIEAIM ... 420
WX B S RAIM. .o 421
WXF R INPUESTIIEAM ... 421
WXFFIIEOUIPULSIIEAM ... 423
WXFFIESIIAM L. 424
WXFIIENamMeELIStValidatorcooo i 424
WX B S Y S IM .o 425
WXFIIESYSIEMHANIET ... 427
X E T 0 e 430
WXFIEXGIIASIZET ..o 434
WX INPULSIIEAM ... 435
WXFIEEIOULPULSTIIEAM ..o 435
WXFOCUSEVENT ...ttt e e e e e e e e e e eeees 436
1 2o 1 PP PRRPPPPPPN 437
WXFONTDALA ...t e e et e e e e ean 444
WXFONTDIAIOQ. oo 447
WXFONTENUMEIATOL ...t e et e e e e e e e e e e st r e e e e e eenns 448
WX ONELIST oo 450
WXFONEMBPIET ...t e e e e et e e e e e e e e e e e n e e e e e eene 451
12 = 1 [ST TP PRRPPPPPPN 454
WX Sl 467
X T P e 469
WXGAUGE ...ttt ettt ettt oottt e e e oo et et e et e e e et e e e e e et e e nrrraeeeeeene 473
WXGDIODIECT ..o 477

CONTENTS

WXGLCANVAS ...ttt ettt ettt et e e e e e et e e e bbb n e e e e e e e e et r e e e e e eene 478
WXGENEICVAlIAALON ... 480
1725 T PP 481
WX GO ST ZET .o 495
WXHASNTADIE. ... 496
WXHEIPCONTIOIEE ... 498
WXHEIMIC I ... 503
WXHEIMICOIOUICEIL ... 509
WXHIMICONTAINEICEIL ... 510
WXHEIMIDCRENAEIE ... 515
WXHEIMIEASYPIINTING ..o 518
WXHEMIFILEE <. 521
WXHIMIHEIPCONTIOIET ... 522
WXHEIMIHEIDDALA. ..o 526
WXHEIMIHEIDFTAME ... 528
WXHEIMILINKINTO ... 532
WXHEMIPAISE ... 533
WXHEMIPTINTOUL ... 537
WXHEMIITAG e 539
WXHIMITAGHEANAIET ... 542
WXHIMITAGSMOUUIE ... 544
WXHIMIWIAGEICEIL ... 545
WXHEMIWINGOW .. 546
WXHEIMIWINPAISEE ... 552
WXHIMIWINTAGHEANAIET ... 558
XH T T P e 559
WXIAIEEVENT ... 560
112 [0 o PP PRPPPPPRPN 562
Lo 4= Lo TSP PRPPPPPTP 569
WXIMAGEHANAIET ... 583
WXIMAGELIST ..o 587
WXINdivIduaILaYOULCONSTIAINT ... 591
WXINIEDIAIOGEVENT ... 594
WXINPUESEIEAIM ...ttt ettt e et et e e r e e e e e e eennb e nreeeeeeenns 595
WXINtEGErFOrMVAIIAALON ... 598
WXINEGETLISIVAIAALON ... 598
WXIPVAAOUIESS . ..o 599
WX OYSTICK oot 600
WXJOYSHICKEVENT ... 607
WXKEBYEVENT ...ttt ettt e ettt e e et et e et r e e e e e e e e s e e e e e eene 610

CONTENTS

WXLAYOULAIGOTTNIM .. 614
WXLAYOULCONSIIAINTS ... 616
1T PR 619
1T 0] 1 =)R 625
10] (O 1 PR 634
LT 0 I T o | PP 648
WXLIStOfSIHNGSLISTVAlIATON ... 651
10 Yo 1= PP 652
112 o Lo TR RPRPPPPPPPN 655
WXLONGLONG ..ttt ettt e ettt e e et e e e e e e e e e e e e e eene 660
170 = 1 P 663
17072241, 1 = | P 665
1T 031 1o 1V 1 P 668
10211 =T] 1YL N N PP 668
WXMBECONVUTES ... e e e e et e e e et e e e et e e e e et e eeeaens 669
101 L0 g 11T | = 1= R 670
123/ (@4 1= 1 T g To [PR 674
WXMDIPAIENTFTAIME ... et e e e et e e e et e e e e et e e e et e e e e etnaeeeeens 675
WXIMEIMOIYDC ...ttt e ettt e e ettt e et r e e e e e e eenrb e nnaeeeeeeen 682
WXMEMOIYFSHANAIET ... 684
WXMEMOIYINPUESTIIEBIM ...ttt e e e e e e e e e e e e r e e e eeeenes 685
WXMEMOIYOULPUESTIEAM ...ttt ettt e e e e e e e e eenr e e e e e eenes 686
17172241, = o O P 687
1021 =T U] = P 697
100721, = 10T 1= o PP 706
1021 =T 10 V= o | P 711
WXMESSAGEDIAIOT ... 713
1T 0[] = U= 714
1T 0L 2= U1 = I LR 716
WXMIMETYPESMANAGET ... 717
1V 0T 1T = U = P 720
17251/ To L1] P 723
WXMOUSEEVENT ...t e e e e et e e e et e e e et e e e eaens 725
WXMOVEEVENT ...t e et e e et e e et e e e e et e e e eenas 733
WXMURIPIECNOICEDIAIOG . ..o 734
1021, U= G 734
LT 0L 10 Yo 2= P 737
10 0] (=] oo T0] 6T = P 738
JT0 (N (o0 =T = T T P 739
1725 [0 (= o o T~ 741

Vi

CONTENTS

10N (0 €= oo o] V=T o | R 747
WXNOTTYEVENT. ... 749
12 (O] o] [T ST 750
WXODJECIRETDALA. ... 754
WXOULPULSTIIRBIM ...ttt ettt e e e e e et e e r e e e e e e eenrb e nneeeeeeenns 755
WXPageSetupDialogDataccoe oo 756
WXPAGESEIUPDIAIOT ... 762
WXPAINTDC ...ttt e e e et e e e e e et e e ettan e e e e e e e e ettt r e e e e e e eearraaaeaaeaeans 763
LT 0= VT 0 Y= o | PP 764
1T 0= 1= 1 PP 765
WXPANEL ...t e e e e r e e e e e e et e e aaaaaans 769
L0 = VAT 1= LY =R 772
1T 0= 1] P 773
17170 o PP 775
1T 0 L =T] T PP 782
1T 0 [0 (O U YRR 784
1V0T2%d (o AT T o o1 P 786
1T L0 o1 PP 790
WXPOSESCHIPIDC ..o 791
WXPTEVIEWECAINVASeeiiieeiiiiiee s e e ee ettt s s e e e et e ettt s s e e e e e e eattaa s s e e e e eeeestanaaeeeeeeeentsnnnaeeeeeeannes 792
VO (=Y oY @] | =T 793
VD =Y oA = T 1= P 794
LT 0 1110 = - 796
WXPTINIDIAIOQ ..o 802
WXPTINIDIAIOGDALA ... 803
1T 0 11 P 808
1T 0 1] (T 0L P 810
1T T0 (T | P 811
LT 0 1L =Y T P 815
WXPTIVAIEDIOPTANGET .o 819
10T (010022 819
WXPTOGIESSDIAIOQ ..o 822
WXPTOCESSEVENT ...t e et e e et e e e et e e e e et e e e eanas 824
{2 0] 0= 4 | TSP PRPPPPPPPN 826
WXPTOPEIYFOIrMDIAlOQ ... 828
WXPTOPEITYFOIMIFTAME ...coviii e e e e e e eenes 829
WXPTOPEIYFOIMPANEL ... 830
WXPTOPErtyFOrMValIdAtOrcoo oo 830
WXPTOPEIYFOIMMVIBW. ... 832
WXPTOPEIYLISIDIAIO ..o 834

Vil

CONTENTS

WX PTOPEITY LISTFETAMIE .o 835
WXPTOPEIYLISIPANEL ... 836
WXPTOPEIMYLISIVAIAALON ... 836
WXPTOPEIYLISIVIBW ..o 839
WXPTOPEITYSRNEEL ... 841
WXPTOPEIYVAlIAALON ... 843
WXPTOPertyValidatorREgISIIYcoo i 844
WXPTOPEITYVAIUE ... 845
WX PTOPEITYVIBW ..o 851
1T LT0% (0] (o o o | PP 853
WXQUETYC 0L e 855
WXQUETYFIRIA <. 858
WXQUETYLAYOULINFOEVENT ... 860
10 = 1o 110 2 o) R 863
10 = Lo 110 2 111 1o o 869
VD= T= UL ol V2= o o o R 871
LT C = IS A 2= T - (o] PR 872
1T 2= = 1L o1 PP 872
172G L= o P 873
L2 =T o0 (0 1S R 877
WXREGION L. 890
WXREGIONITEIATON ... 894
LTS T TS T = o | PP 896
WXSASHLAYOUIWINGAOW ... 898
1T S 7= TS £ AT o [0 901
10T o (=T | 5 906
LTS Tt 1] 1= - T PP 907
WXSCIOIVWINEVENT. ... e e e e e e e e et r e e e e e eeeeatena s e e eeeeeenes 912
1T 0 S Tl 0] YT o PP 914
1Y 065 T] 1= LAY o [0 1 R 916
WXSINGIECNO0ICEDIAIOG ... 924
LTS 1 2T 926
LTS T A= V=T o 928
LTS 1 2 PP 929
17055 1o 1= 934
1T T T 10 Ao o [£ 942
LTS 10T 2= 1 ==] P 943
1T 1011 = (O 1= o P 960
LTS 10101 = Y= o P 963
LTS 1010t = 6= Y= P 964

viii

CONTENTS

WXSOCKETINPUESTIEAIM ... 966
WXSOCKETOULPULSIIEAM ... 967
WXSPINBULION L. 967
WXSPINCE e 971
WXSPINEVEINT ..o 974
WXSPIEEIEVENL. ... 975
WXSPIEEEIWWINAOW ... 977
WX ST CBIIMIBD oo 987
WX ST CBOX oot 989
WX ST CBOXSIZEN ..o 991
WX ST CLINE e 992
2 = Lo = TP 994
WXSTATUSBA ...ttt et e e et e e e e e e e e e e e eene 996
WXSTOPWALCKH <. 1002
WXSTITEAMBASE ... ieeieeeiite ettt e ettt e e e et e e b e e e e et e e n e e e eeee 1003
WXSTTEAMBUITET ... 1005
VXSG e 1011
WXSHHNGFOrMVaAlIAALON ... 1034
WX STINGLIST e 1035
WXSHHNGLISTVAIAAION ... 1036
WXSHINGTOKENIZET ... 1037
WXSYSCOIOUrChanNgEeAEVENTooeiiiiiiiiiiee e 1039
WXSYSIEMSEIINGS ..o 1040
WXTADDEADIAIOG ..o 1044
WXTADDEAPANEL. ... 1045
WXTADCONIIOL ... 1046
WX T @DV IO e 1049
WXTADCI e 1057
WXTADEVENT .. 1063
WXTASKBAIICOMN ... 1064
WXTC P CIENT . 1066
WXTCP CONNECHON ... 1068
WXT C P SBIVET ..ttt ettt e ettt r e e e ettt e r e e e et e e nn b nneeeeeeens 1072
WX T EIMPFIIE 1073
WXTEXECHT e 1075
WXTEXIDAtAODJECT ... 1088
WXTEXEINPUESTIEAM. ...t e et e e e e e e n e e e eeenes 1090
WXTEXEOULPUESTIEAM ...ttt e e et e e e e e e e n e e eeeeenns 1092
WXTEXIENTIYDIAIOQ. ..o 1094
WX T EXEDIOPTAIGET ... ettt e e et e e e e e e e e s neeeeeeens 1096

CONTENTS

WX TIMIESPAN. .o 1097
L= A Z= Lo = o RPN 1097
LT D=1 T RPN 1100
172 1 £== Lo RPN 1106
172111 TP 1113
170111 PP 1118
LT DT 7= o | PPN 1120
WX TP PTOVIART .. 1121
1T 0 Qe e |2 - T PP 1123
1 e Lo] I N o PP 1138
12 = 1 1 PPN 1139
Q1] 1] 4] = P 1155
{0 I] Y= o | PP 1156
WXTTEELAYOUL. ...ttt ettt e e e e e e e e e e e e nn e neeeeeeees 1158
WXTTEELAYOULSTOIEA. ... oo 1164
WXUPAAIEUIEVENT ... 1166
XU R L e —————————— 1169
1T 04 £ 11T F= Lo) PP 1172
1T L2L Q=TT | RPN 1174
(VDA VAT T a1 = - PP 1183
1722 = PP 1184
110 QA= 1Y PP 1188
170254472 T T [0 P 1190
WXWINAOWDIC ... e et s s s e e e e e e ettt e e e e e et e eaatta e e eeeeeeessennnaaaeeeaeenes 1239
WXWINAOWDISADIET ... e e e e e e e e e eaeeee 1240
1T 04T 7= 1 o PPN 1241
LD A= T | Y= o | PP 1243
WXWIZATAPAGE ... 1245
WXWIZardPageSimpPIeo 1246
WXZIPINPUESTIEBIM. ... 1248
WXZIDINPUESTIEAIM ... 1249
WXZIDOULPUESTIEAIM ... 1249
Chapter 6 FUNCTIONS.uuiiiiiiiiiiiiiiiiiieiieieeeeeeeee e eee et ee e eeeeeseeeeeeneeeneeees 1250
RV =T 67T o 1 = o {01 1250
B L= Lo 0T T i) 1251
L1 L= {0 Yo 1o P 1252
[T Yo G 0T 1o 1257
L LYo T [T o= 11T o I 1258
SNG FUNCHONScoiiiiiiiiiiii 1259

CONTENTS

Dialog fUNCHONScooiiiiiie e 1261
L0 0 T 1) 1267
PrINEr SEHINGS ..o 1268
Clipboard fUNCLIONSccoiiiiiiiiii i 1271
Miscellaneous fUNCLIONS..........oooiiiiiiii 1273
=Tl 0 3 S PN 1291
WXWINAOWS reSOUrCE fUNCHIONScoiie oo 1299
LOG FUNCHIONS ... 1302
BT = 1T 1o 1306
Debugging macros and fUNCLONS ... 1307
KEBYCOUES ... 1309
Chapter 7 Classes DY CAtEgOrYuuuiiiiiiiiiiiiiiiiiiiiiiiieieeeeeeeeeeeee e 1312
Chapter 8 TOPIC OVEIVIEWSuuuiiiiiiiiieiiieieieeeieeessseesessassesssessssseesssssssssesseeees 1322
Notes 0N USiNg the refEreNCe ... 1322
Writing a wxWindows application: a rough guide...........ooooooiiii 1322
WXWINAOWS "HEIO WO 1323
WXWINAOWS SAMPIES ... 1326
WXAPD OVEIVIEW. ..ottt 1335
Run time class information OVEIVIEWcocuiiiiiiiii 1336
WXSTING OVEIVIEW ...t 1338
Date and time ClaSSES OVEIVIEW..........coviiiiiiiiiiiee e 1342
Unicode support in WXWINAOWScoouiiiiiiiiiiiii 1346
WXMBCONV ClASSES OVEIVIEW ... 1349
INtErNatioNAliIZALIONcoeeeeee e 1352
Writing Nnon-English appliCatioNScooooeeiiiiee 1353
COoNtAINEN ClASSES OVEIVIEWciiiiiiiiiiiiiiiiiii et 1356
File classes and fUNCLIONS OVEIVIEW ... 1357
WXSTIEAIMS OVEIVIEW ...ttt 1358
WXLOQ CIASSES OVEIVIEW ... 1359
DebUGQING OVEIVIEWcooeiiiiiiiiiieee e 1362
WXCONTFIG ClASSES OVEIVIEW ... 1365
WXEXDE OVEIVIEW ...t 1366
WX B S Y SN .o 1369
Event handling OVEIVIEW ... 1371
WINAOW SEYIES ..o 1378
WINAOW deletion OVEIVIEWccoiiii i 1378
WXDIAI0G OVEIVIEW ... 1381
WXVAIAALIOT OVEIVIEW ... 1381
CONSITAINIS OVEIVIEW ...ceiiiiiiiiiiiiiiiiiiee et 1383

Xi

CONTENTS

The WXWINAOWS rE€SOUICE SYSTEIMN .. .uuuuuuututtiutiitttitiiuettttretesseeeeeessseeeeseeeseseeeeeeeeeeeeeeeseeeeeees 1387
SCIOIING OVEIVIEW......ciiiiiiiiiiiiiiiiii e 1394
Bitmaps and iCONS OVEIVIEW..........cciiiiiiiiiiiiii e 1396
DeVICE CONEXE OVEIVIEWcceiiiiiiiiiiiieee e 1399
WXFONT OVEIVIEW ... 1400
FONt €NCOTING OVEIVIEW ... i
WXSPIEENWINAOW OVEIVIEW. ... 1402
WXTTEECHT OVEIVIEW ... 1404
WXLISTCITT OVEIVIEW ... 1405
WXIMAGELIST OVEIVIEW ...t 1406
CommOoN AIAIOYS OVEIVIEWccciiiiiiiiiiiiiiiii e 1406
DOCUMENIVIEW OVEIVIEW ...t 1410
WXTAD ClASSES OVEIVIEW ... 1416
WXTADVIEW OVEIVIEW ... 1420
B0 o F= T 1Y = PPN 1420
WXGTIA ClASSES OVEIVIEW. ...t 1426
WXTIPPIOVIAEI OVEIVIEW ... 1427
PriNtiNg OVEIVIEWoooiiiiiii 1427
Multithreading OVEIVIEWcoiiiiiiiiii 1428
Drag and drop OVEIVIEW..........ccouiiiiiiiiii e 1429
WXDAtAODJECT OVEIVIEW ... 1431
Database ClasSes OVEIVIEW...........ccoiiiiiiiiii 1432
INterprocess CoOMMUNICALION OVEIVIEW.cooiiiieeiee e 1437
Chapter 9 WXHTML NOTEScuiiiiiiiiiiiiiiiiiiiiieeeieieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeneeeees 1441
WXHTML QUICK SEAIT ... 1441
HTML PHINEING oo 1442
Help FleS FOMMALcooiiiiiii 1442
N PUL LIS e 1444
Cells AN CONLAINEISccviiiiiiiiiiiiii e 1444
L= 1o T a0 1= £ PPN 1446
Tags SUPPOIEd DY WXHTIMILuuuiiiiiiiiiiiiiiiiiitiieiiiiieiebbbbbbbbbbbbbbebebeeebeebbebebeeeeeeeeeeeeeeeeeeeeeees 1448
Chapter 10 Property Sheet ClaSSES..........uuuuiiiiiiiiiiiiiiiiiiiiiiiiiiieeieeeeeeeeeeeeeeeee 1452
INEFOTUCTION .. 1452
HEARIS. ... 1454
LI o1 [o 01T 1= PPN 1454
ClasSES DY CALEOIY ...covviiiiiiiiiiiiii 1462
Chapter 11 WXPYTNON NOTESuuiiiiiiiiiiiiiiiieiiiiieeeeeeeie et eeeeeeees 1464
WAt IS WXPYINONT ... 1464

Xii

CONTENTS

WhY USE WXPYENONT ... 1464
Other PYtNON GUISoooiiiiiiiiiiii 1465
USING WXPYENON......cooiiiiiiiii 1466
wxWindows classes implemented in WXPYIhON ..., 1469
WhETe 10 GO fOF NBID o 1473
Chapter 12 Porting from WXWINAOWS L1.XX........cuuvuurirereiiieiiiieeeeeiereeeeneeeeeen 1474
Preparing for VEISION 2.0........cooiiiiiiiiii 1474
THE NEW EVENT SYSTEIMuuutiiiiiiiiiiiiiitbibbbt bbb bbb bbb bbb bbb bbbbeeereees 1476
Class NIEIArCRY ... 1477
GDI ODJECES ittt 1477
Dialogs and CONLIOIScoooiiiiiiiii 1477
Device contexts and PaINTINGcooviiiiiiiiiiii 1479
MISCEIIANEOUS.......coeiiiiiii 1479
Backward compatibDilityoooiiiiiiiiii 1480
L@ U101 (=3 (=1 (= o= 1480
Chapter 13 RETEIENCESuviiiiiiiiiiiiiiieeie ettt eeeeeeeeeeeeeeeeees 1485
(O =T o (=T gt R N 1 [0 [GO P P PP PPPPPPPPPPPPPPP 1487

Xiii

Chapter 1 Copyright notice

(c) 1999 Julian Smart, Robert Roebling, Vadim Zeitlin and other members of the
wxWindows team
Portions (c) 1996 Artificial Intelligence Applications Institute

Please also see the wxWindows license files (preamble.txt, Igpl.txt, gpl.txt, license.txt,
licendoc.txt) for conditions of software and documentation use.

wxWindows Library License, Version 3
Copyright (C) 1998 Julian Smart, Robert Roebling, Vadim Zeitlin et al.

Everyone is permitted to copy and distribute verbatim copies of this license document,
but changing it is not allowed.

WXWINDOWS LIBRARY LICENSE
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

This library is free software; you can redistribute it and/or modify it under the terms of
the GNU Library General Public License as published by the Free Software Foundation;
either version 2 of the License, or (at your option) any later version.

This library is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY:; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU Library General Public License for
more details.

You should have received a copy of the GNU Library General Public License along with
this software, usually in a file named COPYING.LIB. If not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.

EXCEPTION NOTICE

1. As a special exception, the copyright holders of this library give permission for
additional uses of the text contained in this release of the library as licensed under the
wxWindows Library License, applying either version 3 of the License, or (at your option)
any later version of the License as published by the copyright holders of version 3 of the
License document.

2. The exception is that you may create binary object code versions of any works using
this library or based on this library, and use, copy, modify, link and distribute such binary
object code files unrestricted under terms of your choice.

3. If you copy code from files distributed under the terms of the GNU General Public

License or the GNU Library General Public License into a copy of this library, as this
license permits, the exception does not apply to the code that you add in this way. To

Xiv

COPYRIGHT

avoid misleading anyone as to the status of such modified files, you must delete this
exception notice from such code and/or adjust the licensing conditions notice
accordingly.

4. If you write modifications of your own for this library, it is your choice whether to
permit this exception to apply to your modifications. If you do not wish that, you must
delete the exception notice from such code and/or adjust the licensing conditions notice
accordingly.

GNU Library General Public License, Version 2

Copyright (C) 1991 Free Software Foundation, Inc. 675 Mass Ave, Cambridge, MA
02139, USA

Everyone is permitted to copy and distribute verbatim copies of this license document,
but changing it is not allowed.

[This is the first released version of the library GPL. It is numbered 2 because it goes
with version 2 of the ordinary GPL.]

Preamble

The licenses for most software are designed to take away your freedom to share and
change it. By contrast, the GNU General Public Licenses are intended to guarantee your
freedom to share and change free software -- to make sure the software is free for all its
users.

This license, the Library General Public License, applies to some specially designated
Free Software Foundation software, and to any other libraries whose authors decide to
use it. You can use it for your libraries, too.

When we speak of free software, we are referring to freedom, not price. Our General
Public Licenses are designed to make sure that you have the freedom to distribute
copies of free software (and charge for this service if you wish), that you receive source
code or can get it if you want it, that you can change the software or use pieces of it in
new free programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you these
rights or to ask you to surrender the rights. These restrictions translate to certain
responsibilities for you if you distribute copies of the library, or if you modify it.

For example, if you distribute copies of the library, whether gratis or for a fee, you must
give the recipients all the rights that we gave you. You must make sure that they, too,
receive or can get the source code. If you link a program with the library, you must
provide complete object files to the recipients so that they can relink them with the
library, after making changes to the library and recompiling it. And you must show them
these terms so they know their rights.

Our method of protecting your rights has two steps: (1) copyright the library, and (2) offer
you this license which gives you legal permission to copy, distribute and/or modify the
library.

XV

COPYRIGHT

Also, for each distributor's protection, we want to make certain that everyone
understands that there is no warranty for this free library. If the library is modified by
someone else and passed on, we want its recipients to know that what they have is not
the original version, so that any problems introduced by others will not reflect on the
original authors' reputations.

Finally, any free program is threatened constantly by software patents. We wish to avoid
the danger that companies distributing free software will individually obtain patent
licenses, thus in effect transforming the program into proprietary software. To prevent
this, we have made it clear that any patent must be licensed for everyone's free use or
not licensed at all.

Most GNU software, including some libraries, is covered by the ordinary GNU General
Public License, which was designed for utility programs. This license, the GNU Library
General Public License, applies to certain designated libraries. This license is quite
different from the ordinary one; be sure to read it in full, and don't assume that anything
in it is the same as in the ordinary license.

The reason we have a separate public license for some libraries is that they blur the
distinction we usually make between modifying or adding to a program and simply using
it. Linking a program with a library, without changing the library, is in some sense simply
using the library, and is analogous to running a utility program or application program.
However, in a textual and legal sense, the linked executable is a combined work, a
derivative of the original library, and the ordinary General Public License treats it as
such.

Because of this blurred distinction, using the ordinary General Public License for libraries
did not effectively promote software sharing, because most developers did not use the
libraries. We concluded that weaker conditions might promote sharing better.

However, unrestricted linking of non-free programs would deprive the users of those
programs of all benefit from the free status of the libraries themselves. This Library
General Public License is intended to permit developers of non-free programs to use
free libraries, while preserving your freedom as a user of such programs to change the
free libraries that are incorporated in them. (We have not seen how to achieve this as
regards changes in header files, but we have achieved it as regards changes in the
actual functions of the Library.) The hope is that this will lead to faster development of
free libraries.

The precise terms and conditions for copying, distribution and modification follow. Pay
close attention to the difference between a "work based on the library" and a "work that
uses the library". The former contains code derived from the library, while the latter only
works together with the library.

Note that it is possible for a library to be covered by the ordinary General Public License
rather than by this special one.

GNU LIBRARY GENERAL PUBLIC LICENSE
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

XVi

COPYRIGHT

0. This License Agreement applies to any software library which contains a notice placed
by the copyright holder or other authorized party saying it may be distributed under the
terms of this Library General Public License (also called "this License"). Each licensee is
addressed as "you".

A "library" means a collection of software functions and/or data prepared so as to be
conveniently linked with application programs (which use some of those functions and
data) to form executables.

The "Library", below, refers to any such software library or work which has been
distributed under these terms. A "work based on the Library" means either the Library or
any derivative work under copyright law: that is to say, a work containing the Library or a
portion of it, either verbatim or with modifications and/or translated straightforwardly into
another language. (Hereinafter, translation is included without limitation in the term
"modification”.)

"Source code" for a work means the preferred form of the work for making modifications
to it. For a library, complete source code means all the source code for all modules it
contains, plus any associated interface definition files, plus the scripts used to control
compilation and installation of the library.

Activities other than copying, distribution and modification are not covered by this
License; they are outside its scope. The act of running a program using the Library is not
restricted, and output from such a program is covered only if its contents constitute a
work based on the Library (independent of the use of the Library in a tool for writing it).
Whether that is true depends on what the Library does and what the program that uses
the Library does.

1. You may copy and distribute verbatim copies of the Library's complete source code as
you receive it, in any medium, provided that you conspicuously and appropriately publish
on each copy an appropriate copyright notice and disclaimer of warranty; keep intact all
the notices that refer to this License and to the absence of any warranty; and distribute a
copy of this License along with the Library.

You may charge a fee for the physical act of transferring a copy, and you may at your
option offer warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Library or any portion of it, thus forming a
work based on the Library, and copy and distribute such modifications or work under the
terms of Section 1 above, provided that you also meet all of these conditions:

a) The modified work must itself be a software library.

b) You must cause the files modified to carry prominent notices stating that you
changed the files and the date of any change.

¢) You must cause the whole of the work to be licensed at no charge to all third
parties under the terms of this License.

d) If a facility in the modified Library refers to a function or a table of data to be
supplied by an application program that uses the facility, other than as an

XVil

COPYRIGHT

argument passed when the facility is invoked, then you must make a good faith
effort to ensure that, in the event an application does not supply such function or
table, the facility still operates, and performs whatever part of its purpose remains
meaningful.

(For example, a function in a library to compute square roots has a purpose that is
entirely well-defined independent of the application. Therefore, Subsection 2d
requires that any application-supplied function or table used by this function must
be optional: if the application does not supply it, the square root function must still
compute square roots.)

These requirements apply to the modified work as a whole. If identifiable sections of that
work are not derived from the Library, and can be reasonably considered independent
and separate works in themselves, then this License, and its terms, do not apply to
those sections when you distribute them as separate works. But when you distribute the
same sections as part of a whole which is a work based on the Library, the distribution of
the whole must be on the terms of this License, whose permissions for other licensees
extend to the entire whole, and thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to work
written entirely by you; rather, the intent is to exercise the right to control the distribution
of derivative or collective works based on the Library.

In addition, mere aggregation of another work not based on the Library with the Library
(or with a work based on the Library) on a volume of a storage or distribution medium
does not bring the other work under the scope of this License.

3. You may opt to apply the terms of the ordinary GNU General Public License instead
of this License to a given copy of the Library. To do this, you must alter all the notices
that refer to this License, so that they refer to the ordinary GNU General Public License,
version 2, instead of to this License. (If a newer version than version 2 of the ordinary
GNU General Public License has appeared, then you can specify that version instead if
you wish.) Do not make any other change in these notices.

Once this change is made in a given copy, it is irreversible for that copy, so the ordinary
GNU General Public License applies to all subsequent copies and derivative works
made from that copy.

This option is useful when you wish to copy part of the code of the Library into a program
that is not a library.

4. You may copy and distribute the Library (or a portion or derivative of it, under Section
2) in object code or executable form under the terms of Sections 1 and 2 above provided
that you accompany it with the complete corresponding machine-readable source code,
which must be distributed under the terms of Sections 1 and 2 above on a medium
customarily used for software interchange.

If distribution of object code is made by offering access to copy from a designated place,
then offering equivalent access to copy the source code from the same place satisfies
the requirement to distribute the source code, even though third parties are not
compelled to copy the source along with the object code.

XVili

COPYRIGHT

5. A program that contains no derivative of any portion of the Library, but is designed to
work with the Library by being compiled or linked with it, is called a "work that uses the

Library". Such a work, in isolation, is not a derivative work of the Library, and therefore

falls outside the scope of this License.

However, linking a "work that uses the Library" with the Library creates an executable
that is a derivative of the Library (because it contains portions of the Library), rather than
a "work that uses the library". The executable is therefore covered by this License.
Section 6 states terms for distribution of such executables.

When a "work that uses the Library" uses material from a header file that is part of the
Library, the object code for the work may be a derivative work of the Library even though
the source code is not. Whether this is true is especially significant if the work can be
linked without the Library, or if the work is itself a library. The threshold for this to be true
is not precisely defined by law.

If such an object file uses only numerical parameters, data structure layouts and
accessors, and small macros and small inline functions (ten lines or less in length), then
the use of the object file is unrestricted, regardless of whether it is legally a derivative
work. (Executables containing this object code plus portions of the Library will still fall
under Section 6.)

Otherwise, if the work is a derivative of the Library, you may distribute the object code
for the work under the terms of Section 6. Any executables containing that work also fall
under Section 6, whether or not they are linked directly with the Library itself.

6. As an exception to the Sections above, you may also compile or link a "work that uses
the Library" with the Library to produce a work containing portions of the Library, and
distribute that work under terms of your choice, provided that the terms permit
modification of the work for the customer's own use and reverse engineering for
debugging such modifications.

You must give prominent notice with each copy of the work that the Library is used in it
and that the Library and its use are covered by this License. You must supply a copy of
this License. If the work during execution displays copyright notices, you must include
the copyright notice for the Library among them, as well as a reference directing the user
to the copy of this License. Also, you must do one of these things:

a) Accompany the work with the complete corresponding machine-readable source
code for the Library including whatever changes were used in the work (which
must be distributed under Sections 1 and 2 above); and, if the work is an
executable linked with the Library, with the complete machine-readable "work that
uses the Library", as object code and/or source code, so that the user can modify
the Library and then relink to produce a modified executable containing the
modified Library. (It is understood that the user who changes the contents of
definitions files in the Library will not necessarily be able to recompile the
application to use the modified definitions.)

b) Accompany the work with a written offer, valid for at least three years, to give
the same user the materials specified in Subsection 6a, above, for a charge no

XiX

COPYRIGHT

more than the cost of performing this distribution.

¢) If distribution of the work is made by offering access to copy from a designated
place, offer equivalent access to copy the above specified materials from the same
place.

d) Verify that the user has already received a copy of these materials or that you
have already sent this user a copy.

For an executable, the required form of the "work that uses the Library" must include any
data and utility programs needed for reproducing the executable from it. However, as a
special exception, the source code distributed need not include anything that is normally
distributed (in either source or binary form) with the major components (compiler, kernel,
and so on) of the operating system on which the executable runs, unless that component
itself accompanies the executable.

It may happen that this requirement contradicts the license restrictions of other
proprietary libraries that do not normally accompany the operating system. Such a
contradiction means you cannot use both them and the Library together in an executable
that you distribute.

7. You may place library facilities that are a work based on the Library side-by-side in a
single library together with other library facilities not covered by this License, and
distribute such a combined library, provided that the separate distribution of the work
based on the Library and of the other library facilities is otherwise permitted, and
provided that you do these two things:

a) Accompany the combined library with a copy of the same work based on the
Library, uncombined with any other library facilities. This must be distributed under
the terms of the Sections above.

b) Give prominent notice with the combined library of the fact that part of it is a
work based on the Library, and explaining where to find the accompanying
uncombined form of the same work.

8. You may not copy, modify, sublicense, link with, or distribute the Library except as
expressly provided under this License. Any attempt otherwise to copy, modify,
sublicense, link with, or distribute the Library is void, and will automatically terminate
your rights under this License. However, parties who have received copies, or rights,
from you under this License will not have their licenses terminated so long as such
parties remain in full compliance.

9. You are not required to accept this License, since you have not signed it. However,
nothing else grants you permission to modify or distribute the Library or its derivative
works. These actions are prohibited by law if you do not accept this License. Therefore,
by modifying or distributing the Library (or any work based on the Library), you indicate
your acceptance of this License to do so, and all its terms and conditions for copying,
distributing or modifying the Library or works based on it.

10. Each time you redistribute the Library (or any work based on the Library), the
recipient automatically receives a license from the original licensor to copy, distribute,

XX

COPYRIGHT

link with or modify the Library subject to these terms and conditions. You may not
impose any further restrictions on the recipients' exercise of the rights granted herein.
You are not responsible for enforcing compliance by third parties to this License.

11. If, as a consequence of a court judgment or allegation of patent infringement or for
any other reason (not limited to patent issues), conditions are imposed on you (whether
by court order, agreement or otherwise) that contradict the conditions of this License,
they do not excuse you from the conditions of this License. If you cannot distribute so as
to satisfy simultaneously your obligations under this License and any other pertinent
obligations, then as a consequence you may not distribute the Library at all. For
example, if a patent license would not permit royalty-free redistribution of the Library by
all those who receive copies directly or indirectly through you, then the only way you
could satisfy both it and this License would be to refrain entirely from distribution of the
Library.

If any portion of this section is held invalid or unenforceable under any particular
circumstance, the balance of the section is intended to apply, and the section as a whole
is intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents or other property
right claims or to contest validity of any such claims; this section has the sole purpose of
protecting the integrity of the free software distribution system which is implemented by
public license practices. Many people have made generous contributions to the wide
range of software distributed through that system in reliance on consistent application of
that system; it is up to the author/donor to decide if he or she is willing to distribute
software through any other system and a licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence
of the rest of this License.

12. If the distribution and/or use of the Library is restricted in certain countries either by
patents or by copyrighted interfaces, the original copyright holder who places the Library
under this License may add an explicit geographical distribution limitation excluding
those countries, so that distribution is permitted only in or among countries not thus
excluded. In such case, this License incorporates the limitation as if written in the body
of this License.

13. The Free Software Foundation may publish revised and/or new versions of the
Library General Public License from time to time. Such new versions will be similar in
spirit to the present version, but may differ in detail to address new problems or
concerns.

Each version is given a distinguishing version number. If the Library specifies a version
number of this License which applies to it and "any later version", you have the option of
following the terms and conditions either of that version or of any later version published
by the Free Software Foundation. If the Library does not specify a license version
number, you may choose any version ever published by the Free Software Foundation.

14. If you wish to incorporate parts of the Library into other free programs whose
distribution conditions are incompatible with these, write to the author to ask for
permission. For software which is copyrighted by the Free Software Foundation, write to

XXi

COPYRIGHT

the Free Software Foundation; we sometimes make exceptions for this. Our decision will
be guided by the two goals of preserving the free status of all derivatives of our free
software and of promoting the sharing and reuse of software generally.

NO WARRANTY

15. BECAUSE THE LIBRARY IS LICENSED FREE OF CHARGE, THERE IS NO
WARRANTY FOR THE LIBRARY, TO THE EXTENT PERMITTED BY APPLICABLE
LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
HOLDERS AND/OR OTHER PARTIES PROVIDE THE LIBRARY "AS IS" WITHOUT
WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT
NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY
AND PERFORMANCE OF THE LIBRARY IS WITH YOU. SHOULD THE LIBRARY
PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING,
REPAIR OR CORRECTION.

16. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY
MODIFY AND/OR REDISTRIBUTE THE LIBRARY AS PERMITTED ABOVE, BE
LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL,
INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR
INABILITY TO USE THE LIBRARY (INCLUDING BUT NOT LIMITED TO LOSS OF
DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY
YOU OR THIRD PARTIES OR A FAILURE OF THE LIBRARY TO OPERATE WITH
ANY OTHER SOFTWARE), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS
Appendix: How to Apply These Terms to Your New Libraries

If you develop a new library, and you want it to be of the greatest possible use to the
public, we recommend making it free software that everyone can redistribute and
change. You can do so by permitting redistribution under these terms (or, alternatively,
under the terms of the ordinary General Public License).

To apply these terms, attach the following notices to the library. It is safest to attach
them to the start of each source file to most effectively convey the exclusion of warranty;
and each file should have at least the "copyright" line and a pointer to where the full
notice is found.

<one line to give the library's nane and a brief idea of what it does.>
Copyright (C <year> <nane of author>

This library is free software; you can redistribute it and/or
nodify it under the terns of the GNU Library General Public

Li cense as published by the Free Software Foundation; either
version 2 of the License, or (at your option) any |later version.

This library is distributed in the hope that it will be useful,

XXil

COPYRIGHT

but W THOUT ANY WARRANTY; without even the inplied warranty of
MERCHANTABI LI TY or FI TNESS FOR A PARTI CULAR PURPOSE. See the GNU
Li brary General Public License for nore details.

You shoul d have received a copy of the GNU Library General Public
Li cense along with this library; if not, wite to the Free
Sof t war e Foundation, Inc., 675 Mass Ave, Canbridge, MA 02139, USA

Also add information on how to contact you by electronic and paper mail.

You should also get your employer (if you work as a programmer) or your schoal, if any,
to sign a "copyright disclaimer" for the library, if necessary. Here is a sample; alter the
names:

Yoyodyne, Inc., hereby disclains all copyright interest in the
library "Frob' (a library for tweaki ng knobs) witten by Janmes Random
Hacker .

<signature of Ty Coon>, 1 April 1990
Ty Coon, President of Vice

That's all there is to it!

XXiii

Chapter 2 Introduction

What is wxWindows?

wxWindows is a C++ framework providing GUI (Graphical User Interface) and other
facilities on more than one platform. Version 2 currently supports MS Windows (16-bit,
Windows 95 and Windows NT), Unix with GTK+, Unix with Motif, and Mac. An OS/2 port
is in progress.

wxWindows was originally developed at the Artificial Intelligence Applications Institute,
University of Edinburgh, for internal use, and was first made publicly available in 1993.
Version 2 is a vastly improved version written and maintained by Julian Smart, Robert
Roebling, Vadim Zeitlin and many others.

This manual discusses wxWindows in the context of multi-platform development.

Please note that in the following, "MS Windows" often refers to all platforms related to
Microsoft Windows, including 16-bit and 32-bit variants, unless otherwise stated. All
trademarks are acknowledged.

Why another cross-platform development tool?

wxWindows was developed to provide a cheap and flexible way to maximize investment
in GUI application development. While a number of commercial class libraries already
existed for cross-platform development, none met all of the following criteria:

low price;

source availability;

simplicity of programming;

support for a wide range of compilers.

PONE

Since wxWindows was started, several other free or almost-free GUI frameworks have
emerged. However, none has the range of features, flexibility, documentation and the
well-established development team that wxWindows has.

As open source software, wxWindows has benefited from comments, ideas, bug fixes,
enhancements and the sheer enthusiasm of users. This gives wxWindows a certain
advantage over its commercial competitors (and over free libraries without an
independent development team), plus a robustness against the transience of one
individual or company. This openness and availability of source code is especially
important when the future of thousands of lines of application code may depend upon
the longevity of the underlying class library.

CHAPTER 2

Version 2 goes much further than previous versions in terms of generality and features,
allowing applications to be produced that are often indistinguishable from those
produced using single-platform toolkits such as Motif, GTK+ and MFC.

The importance of using a platform-independent class library cannot be overstated,
since GUI application development is very time-consuming, and sustained popularity of
particular GUIs cannot be guaranteed. Code can very quickly become obsolete if it
addresses the wrong platform or audience. wxWindows helps to insulate the
programmer from these winds of change. Although wxWindows may not be suitable for
every application (such as an OLE-intensive program), it provides access to most of the
functionality a GUI program normally requires, plus many extras such as network
programming, PostScript output, and HTML rendering; and it can of course be extended
as needs dictate. As a bonus, it provides a far cleaner and easier programming
interface than the native APIs. Programmers may find it worthwhile to use wxWindows
even if they are developing on only one platform.

It is impossible to sum up the functionality of wxWindows in a few paragraphs, but here
are some of the benefits:

Low cost (free, in fact!)

You get the source.

Available on a variety of popular platforms.

Works with almost all popular C++ compilers and Python.

Over 50 example programs.

Over 1000 pages of printable and on-line documentation.

Includes Tex2RTF, to allow you to produce your own documentation in Windows
Help, HTML and Word RTF formats.

Simple-to-use, object-oriented API.

Flexible event system.

Graphics calls include lines, rounded rectangles, splines, polylines, etc.
Constraint-based and sizer-based layouts.

Print/preview and document/view architectures.

Toolbar, notebook, tree control, advanced list control classes.

PostScript generation under Unix, normal MS Windows printing on the PC.
MDI (Multiple Document Interface) support.

Can be used to create DLLs under Windows, dynamic libraries on Unix.
Common dialogs for file browsing, printing, colour selection, etc.

Under MS Windows, support for creating metafiles and copying them to the
clipboard.

An API for invoking help from applications.

Ready-to-use HTML window (supporting a subset of HTML).

Dialog Editor for building dialogs.

Network support via a family of socket and protocol classes.

Support for platform independent image processing.

Built-in support for many file formats (BMP, PNG, JPEG, GIF, XPM, PNM, PCX).

CHAPTER 2

Changes from version 1.xx

These are a few of the major differences between versions 1.xx and 2.0.
Removals:

XView is no longer supported;
all controls (panel items) no longer have labels attached to them;
wxForm has been removed,;

wxCanvasDC, wxPanelDC removed (replaced by wxClientDC, wxWindowDC,
wxPaintDC which can be used for any window);

wxMultiText, wxTextWindow, wxText removed and replaced by wxTextCitrl;
classes no longer divided into generic and platform-specific parts, for efficiency.

Additions and changes:

class hierarchy changed, and restrictions about subwindow nesting lifted;
header files reorganized to conform to normal C++ standards;

classes less dependent on each another, to reduce executable size;
wxString used instead of char* wherever possible;

the number of separate but mandatory utilities reduced;

the event system has been overhauled, with virtual functions and callbacks
being replaced with MFC-like event tables;

new controls, such as wxTreeCtrl, wxListCtrl, wxSpinButton;

less inconsistency about what events can be handled, so for example mouse
clicks or key presses on controls can now be intercepted;

the status bar is now a separate class, wxStatusBar, and is implemented in
generic wxWindows code;

some renaming of controls for greater consistency;

wxBitmap has the notion of bitmap handlers to allow for extension to new
formats without ifdefing;

new dialogs: wxPageSetupDialog, wxFileDialog, wxDirDialog,
wxMessageDialog, wxSingleChoiceDialog, wxTextEntryDialog;

GDI objects are reference-counted and are now passed to most functions by
reference, making memory management far easier;

wxSystemSettings class allows querying for various system-wide properties
such as dialog font, colours, user interface element sizes, and so on;

better platform look and feel conformance;

toolbar functionality now separated out into a family of classes with the same
AP,

device contexts are no longer accessed using wxWindow::GetDC - they are
created temporarily with the window as an argument;

events from sliders and scrollbars can be handled more flexibly;

the handling of window close events has been changed in line with the new
event system;

the concept of validator has been added to allow much easier coding of the
relationship between controls and application data;

CHAPTER 2

the documentation has been revised, with more cross-referencing.
Platform-specific changes:

The Windows header file (windows.h) is no longer included by wxWindows
headers;

wx.dll supported under Visual C++;

the full range of Windows 95 window decorations are supported, such as modal
frame borders;

MDI classes brought out of wxFrame into separate classes, and made more
flexible.

Changes from version 2.0

These are a few of the differences between versions 2.0 and 2.2.

Removals:

GTK 1.0 no longer supported.

Additions and changes:

Corrected many classes to conform better to documented behaviour.
Added handlers for more image formats (Now GIF, JPEG, PCX, BMP, XPM,
PNG, PNM).

Improved support for socket and network functions.

Support for different national font encodings.

Sizer based layout system.

HTML widget and help system.

Added some controls (e.g. wxSpinCtrl) and supplemented many.
Many optical improvements to GTK port.

Support for menu accelerators in GTK port.

Enhanced and improved support for scrolling, including child windows.
Complete rewrite of clipboard and drag and drop classes.

Improved support for ODBC databases.

Improved tab traversal in dialogs.

wxWindows requirements

To make use of wxWindows, you currently need one or both of the following setups.

(a) PC:

CHAPTER 2

1. A 486 or higher PC running MS Windows.

2. A Windows compiler: most are supported, but please see i nstal | . t xt for
details. Supported compilers include Microsoft Visual C++ 4.0 or higher, Borland
C++, Cygwin, Metrowerks CodeWatrrior.

3. Atleast 60 MB of disk space.

(b) Unix:

1. Almost any C++ compiler, including GNU C++ (EGCS 1.1.1 or above).
2. Almost any Unix workstation, and one of: GTK+ 1.2, Motif 1.2 or higher, Lesstif.
3. Atleast 60 MB of disk space.

Availability and location of wxWindows

wxWindows is available by anonymous FTP and World Wide Web from
ftp://wvww.remstar.com/pub/wxwin (f t p: / / www. r errst ar . cont pub/ wxwi n) and/or
http://ww.wxwindows.org (ht t p: / / waww. wxwi ndows. or g).

You can also buy a CD-ROM using the form on the Web site, or by contacting:

Julian Smart

12 North Street West
Uppingham

Rutland

LE15 9SG
julian.smart@ukonline.co.uk

Acknowledgments

Thanks are due to AIAI for being willing to release the original version of wxWindows
into the public domain, and to our patient partners.

We would patrticularly like to thank the following for their contributions to wxWindows,
and the many others who have been involved in the project over the years. Apologies for
any unintentional omissions from this list. Yiorgos Adamopoulos, Jamshid Afshar,
Alejandro Aguilar-Sierra, AlAl, Patrick Albert, Karsten Ballueder, Michael Bedward, Kai
Bendorf, Yura Bidus, Keith Gary Boyce, Chris Breeze, Pete Britton, lan Brown, C.
Buckley, Dmitri Chubraev, Robin Corbet, Cecil Coupe, Andrew Davison, Neil Dudman,
Robin Dunn, Hermann Dunkel, Jos van Eijndhoven, Tom Felici, Thomas Fettig,
Matthew Flatt, Pasquale Foggia, Josep Fortiana, Todd Fries, Dominic Gallagher,
Guillermo Rodriguez Garcia, Wolfram Gloger, Norbert Grotz, Stefan Gunter, Bill Hale,
Patrick Halke, Stefan Hammes, Guillaume Helle, Harco de Hilster, Cord Hockemeyer,
Markus Holzem, Olaf Klein, Leif Jensen, Bart Jourquin, Guilhem Lavaux, Jan Lessner,
Nicholas Liebmann, Torsten Liermann, Per Lindgvist, Thomas Runge, Tatu Mannisto,

CHAPTER 2

Scott Maxwell, Thomas Myers, Oliver Niedung, Stefan Neis, Hernan Otero, lan Perrigo,
Timothy Peters, Giordano Pezzoli, Harri Pasanen, Thomaso Paoletti, Garrett Potts,
Marcel Rasche, Robert Roebling, Dino Scaringella, Jobst Schmalenbach, Arthur Seaton,
Paul Shirley, Vaclav Slavik, Stein Somers, Petr Smilauer, Neil Smith, Kari Syst&, Arthur
Tetzlaff-Deas, Jonathan Tonberg, Jyrki Tuomi, David Webster, Janos Vegh, Andrea
Venturoli, Vadim Zeitlin, Xiaokun Zhu, Edward Zimmermann.

‘Graphplace', the basis for the wxGraphLayout library, is copyright Dr. Jos T.J. van
Eijndhoven of Eindhoven University of Technology. The code has been used in
wxGraphLayout with his permission.

We also acknowledge the author of XFIG, the excellent Unix drawing tool, from the
source of which we have borrowed some spline drawing code. His copyright is included
below.

XFig2.1 is copyright (c) 1985 by Supoj Sutanthavibul. Permission to use, copy, modify,
distribute, and sell this software and its documentation for any purpose is hereby granted
without fee, provided that the above copyright notice appear in all copies and that both
that copyright notice and this permission notice appear in supporting documentation, and
that the name of M.I.T. not be used in advertising or publicity pertaining to distribution of
the software without specific, written prior permission. M.l.T. makes no representations
about the suitability of this software for any purpose. It is provided "as is" without
express or implied warranty.

Chapter 3 Multi-platform development with
wxWindows

This chapter describes the practical details of using wxWindows. Please see the file
install.txt for up-to-date installation instructions, and changes.txt for differences between
versions.

Include files

The main include file is " wx/ wx. h"; this includes the most commonly used modules of
wxWindows.

To save on compilation time, include only those header files relevant to the source file. If
you are using precompiled headers, you should include the following section before any
other includes:

/1 For conpilers that support preconpilation, includes "wx.h".
#i ncl ude <wx/wxprec. h>

#i fdef __ BORLANDC _
#pragma hdr st op
#endi f

#i f ndef WK_PRECOWP

/1 1nclude your niniml set of headers here, or wx.h
#i ncl ude <wx/wx. h>

#endi f

now your other include files ...

The file " wx/ wxpr ec. h" includes " wx/ wx. h" . Although this incantation may seem
quirky, it is in fact the end result of a lot of experimentation, and several Windows
compilers to use precompilation (those tested are Microsoft Visual C++, Borland C++
and Watcom C++).

Borland precompilation is largely automatic. Visual C++ requires specification of

"wx/ wxprec. h" as the file to use for precompilation. Watcom C++ is automatic apart
from the specification of the .pch file. Watcom C++ is strange in requiring the
precompiled header to be used only for object files compiled in the same directory as
that in which the precompiled header was created. Therefore, the wxWindows Watcom
C++ makefiles go through hoops deleting and recreating a single precompiled header
file for each module, thus preventing an accumulation of many multi-megabyte .pch files.

Libraries

CHAPTER 3

The GTK and Motif ports of wxWindow can create either a static library or a shared
library on most Unix or Unix-like systems. The static library is called libwx_gtk.a and
libwx_motif.a whereas the name of the shared library is dependent on the system it is
created on and the version you are using. The library name for the GTK version of
wxWindows 2.2 on Linux and Solaris will be libwx_gtk-2.2.s0.0.0.0, on HP-UX; it will be
libwx_gtk-2.2.sl, on AIX just libwx_gtk.a etc.

Under Windows, use the library wx.lib (release) or wxd.lib (debug) for stand-alone
Windows applications, or wxdll.lib (wxdlld.lib) for creating DLLs.

Configuration

Options are configurable in the file " wx/ XXX/ set up. h" where XXX is the required
platform (such as msw, motif, gtk, mac). Some settings are a matter of taste, some help
with platform-specific problems, and others can be set to minimize the size of the library.
Please see the setup.h file and i nstal | . t xt files for details on configuration.

Under Unix (GTK and Motif) the corresponding setup.h files are generated automatically
when configuring the wxWindows using the "configure" script. When using the RPM
packages for installing wxWindows on Linux, a correct setup.h is shipped in the package
and this must not be changed.

Makefiles

At the moment there is no attempt to make Unix makefiles and PC makefiles compatible,
i.e. one makefile is required for each environment. The Unix ports use a sophisticated
system based on the GNU autoconf tool and this system will create the makefiles as
required on the respective platform. Although the makefiles are not identical in Windows,
Mac and Unix, care has been taken to make them relatively similar so that moving from
one platform to another will be painless.

Sample makefiles for Unix (suffix .unx), MS C++ (suffix .DOS and .NT), Borland C++
(.BCC and .B32) and Symantec C++ (.SC) are included for the library, demos and
utilities.

The controlling makefile for wxWindows is in the MS-Windows directory sr ¢/ nswfor the
different Windows compiler and in the build directory when using the Unix ports. The
build directory can be chosen by the user. It is the directory in which the "configure"
script is run. This can be the normal base directory (by running . / conf i gur e there) or
any other directory (e.g. . . / conf i gur e after creating a build-directory in the directory
level above the base directory).

CHAPTER 3

Please see the platform-specifici nst al | . t xt file for further details.

Windows-specific files

wxWindows application compilation under MS Windows requires at least two extra files,
resource and module definition files.

Resource file

The least that must be defined in the Windows resource file (extension RC) is the
following statement:

rci ncl ude "wx/ nmsw wx. rc"

which includes essential internal wxWindows definitions. The resource script may also
contain references to icons, cursors, etc., for example:

WXi con i con Wx.ico

The icon can then be referenced by name when creating a frame icon. See the MS
Windows SDK documentation.

Note: include wx.rc after any ICON statements so programs that search your executable
for icons (such as the Program Manager) find your application icon first.

Module definition file

A module definition file (extension DEF) is required for 16-bit applications, and looks like

the following:

NAVE Hello

DESCRI PTION ' Hel | o

EXETYPE W NDOAG

STUB "W NSTUB. EXE

CODE PRELOAD MOVEABLE DI SCARDABLE
DATA PRELOCAD MOVEABLE MULTI PLE
HEAPSI ZE 1024

STACKSI ZE 8192

The only lines which will usually have to be changed per application are NAME and
DESCRIPTION.

Allocating and deleting wxWindows objects

CHAPTER 3

In general, classes derived from wxWindow must dynamically allocated with new and
deleted with delete. If you delete a window, all of its children and descendants will be
automatically deleted, so you don't need to delete these descendants explicitly.

When deleting a frame or dialog, use Destroy rather than delete so that the wxWindows
delayed deletion can take effect. This waits until idle time (when all messages have been
processed) to actually delete the window, to avoid problems associated with the GUI
sending events to deleted windows.

Don't create a window on the stack, because this will interfere with delayed deletion.

If you decide to allocate a C++ array of objects (such as wxBitmap) that may be cleaned
up by wxWindows, make sure you delete the array explicitly before wxWindows has a
chance to do so on exit, since calling delete on array members will cause memory
problems.

wxColour can be created statically: it is not automatically cleaned up and is unlikely to be
shared between other objects; it is lightweight enough for copies to be made.

Beware of deleting objects such as a wxPen or wxBitmap if they are still in use.
Windows is particularly sensitive to this: so make sure you make calls like
wxDC::SetPen(wxNullPen) or wxDC::SelectObject(wxNullBitmap) before deleting a
drawing object that may be in use. Code that doesn't do this will probably work fine on
some platforms, and then fail under Windows.

Architecture dependency

A problem which sometimes arises from writing multi-platform programs is that the basic
C types are not defined the same on all platforms. This holds true for both the length in
bits of the standard types (such as int and long) as well as their byte order, which might
be little endian (typically on Intel computers) or big endian (typically on some Unix
workstations). wxWindows defines types and macros that make it easy to write
architecture independent code. The types are:

wxInt32, wxInt16, wxInt8, wxUint32, wxUint16 = wxWord, wxUint8 = wxByte

where wxInt32 stands for a 32-bit signed integer type etc. You can also check which
architecture the program is compiled on using the wxBYTE_ORDER define which is
either wxBIG_ENDIAN or wxLITTLE_ENDIAN (in the future maybe wxPDP_ENDIAN as
well).

The macros handling bit-swapping with respect to the applications endianness are
described in the Macros (p. 1291) section.

10

CHAPTER 3

Conditional compilation

One of the purposes of wxWindows is to reduce the need for conditional compilation in
source code, which can be messy and confusing to follow. However, sometimes it is
necessary to incorporate platform-specific features (such as metafile use under MS
Windows). The symbols listed in the file synbol s. t xt may be used for this purpose,
along with any user-supplied ones.

C++ issues

The following documents some miscellaneous C++ issues.

Templates

wxWindows does not use templates since it is a notoriously unportable feature.

RTTI

wxWindows does not use run-time type information since wxWindows provides its own
run-time type information system, implemented using macros.

Type of NULL

Some compilers (e.g. the native IRIX cc) define NULL to be OL so that no conversion to
pointers is allowed. Because of that, all these occurrences of NULL in the GTK port use
an explicit conversion such as

wxW ndow *mmy_wi ndow = (wWxW ndow*) NULL;

It is recommended to adhere to this in all code using wxWindows as this make the code
(a bit) more portable.

Precompiled headers

Some compilers, such as Borland C++ and Microsoft C++, support precompiled
headers. This can save a great deal of compiling time. The recommended approach is to
precompile "wx. h", using this precompiled header for compiling both wxWindows itself
and any wxWindows applications. For Windows compilers, two dummy source files are

11

CHAPTER 3

provided (one for normal applications and one for creating DLLS) to allow initial creation
of the precompiled header.

However, there are several downsides to using precompiled headers. One is that to take
advantage of the facility, you often need to include more header files than would
normally be the case. This means that changing a header file will cause more
recompilations (in the case of wxWindows, everything needs to be recompiled since
everything includes "wx. h" 1)

A related problem is that for compilers that don't have precompiled headers, including a
lot of header files slows down compilation considerably. For this reason, you will find (in
the common X and Windows parts of the library) conditional compilation that under Unix,
includes a minimal set of headers; and when using Visual C++, includes wx. h. This
should help provide the optimal compilation for each compiler, although it is biased
towards the precompiled headers facility available in Microsoft C++.

File handling

When building an application which may be used under different environments, one
difficulty is coping with documents which may be moved to different directories on other
machines. Saving a file which has pointers to full pathnames is going to be inherently
unportable. One approach is to store filenames on their own, with no directory
information. The application searches through a number of locally defined directories to
find the file. To support this, the class wxPathList makes adding directories and
searching for files easy, and the global function wxFileNameFromPath allows the
application to strip off the filename from the path if the filename must be stored. This has
undesirable ramifications for people who have documents of the same name in different
directories.

As regards the limitations of DOS 8+3 single-case filenames versus unrestricted Unix
filenames, the best solution is to use DOS filenames for your application, and also for
document filenames if the user is likely to be switching platforms regularly. Obviously
this latter choice is up to the application user to decide. Some programs (such as YACC
and LEX) generate filenames incompatible with DOS; the best solution here is to have
your Unix makefile rename the generated files to something more compatible before
transferring the source to DOS. Transferring DOS files to Unix is no problem, of course,
apart from EOL conversion for which there should be a utility available (such as
dos2unix).

See also the File Functions section of the reference manual for descriptions of
miscellaneous file handling functions.

12

Chapter 4 Programming strategies

This chapter is intended to list strategies that may be useful when writing and debugging
wxWindows programs. If you have any good tips, please submit them for inclusion here.

Strategies for reducing programming errors

Use ASSERT

Although | haven't done this myself within wxWindows, it is good practice to use
ASSERT statements liberally, that check for conditions that should or should not hold,
and print out appropriate error messages. These can be compiled out of a non-
debugging version of wxWindows and your application. Using ASSERT is an example of
‘defensive programming': it can alert you to problems later on.

Use wxString in preference to character arrays

Using wxString can be much safer and more convenient than using char *. Again, |
haven't practiced what I'm preaching, but I'm now trying to use wxString wherever
possible. You can reduce the possibility of memory leaks substantially, and it is much
more convenient to use the overloaded operators than functions such as strcmp.
wxString won't add a significant overhead to your program; the overhead is
compensated for by easier manipulation (which means less code).

The same goes for other data types: use classes wherever possible.

Strategies for portability

Use relative positioning or constraints

Don't use absolute panel item positioning if you can avoid it. Different GUIs have very
differently sized panel items. Consider using the constraint system, although this can be
complex to program.

Alternatively, you could use alternative .wrc (wxWindows resource files) on different

platforms, with slightly different dimensions in each. Or space your panel items out to
avoid problems.

13

CHAPTER 4

Use wxWindows resource files

Use .wrc (wxWindows resource files) where possible, because they can be easily
changed independently of source code. Bitmap resources can be set up to load different
kinds of bitmap depending on platform (see the section on resource files).

Strategies for debugging

Positive thinking

It is common to blow up the problem in one's imagination, so that it seems to threaten
weeks, months or even years of work. The problem you face may seem insurmountable:
but alImost never is. Once you have been programming for some time, you will be able to
remember similar incidents that threw you into the depths of despair. But remember, you
always solved the problem, somehow!

Perseverance is often the key, even though a seemingly trivial problem can take an
apparently inordinate amount of time to solve. In the end, you will probably wonder why
you worried so much. That's not to say it isn't painful at the time. Try not to worry -- there
are many more important things in life.

Simplify the problem

Reduce the code exhibiting the problem to the smallest program possible that exhibits
the problem. If it is not possible to reduce a large and complex program to a very small
program, then try to ensure your code doesn't hide the problem (you may have
attempted to minimize the problem in some way: but now you want to expose it).

With luck, you can add a small amount of code that causes the program to go from
functioning to non-functioning state. This should give a clue to the problem. In some
cases though, such as memory leaks or wrong deallocation, this can still give totally
spurious results!

Use a debugger

This sounds like facetious advice, but it is surprising how often people don't use a
debugger. Often it is an overhead to install or learn how to use a debugger, but it really
is essential for anything but the most trivial programs.

Use logging functions

14

CHAPTER 4

There is a variety of logging functions that you can use in your program: see Logging
functions (p. 1302).

Using tracing statements may be more convenient than using the debugger in some

circumstances (such as when your debugger doesn't support a lot of debugging code, or
you wish to print a bunch of variables).

Use the wxWindows debugging facilities

You can use wxDebugContext to check for memory leaks and corrupt memory: in fact in
debugging mode, wxWindows will automatically check for memory leaks at the end of
the program if wxWindows is suitably configured. Depending on the operating system
and compiler, more or less specific information about the problem will be logged.

You should also use debug macros (p. 1307) as part of a 'defensive programming’
strategy, scattering WXASSERTS liberally to test for problems in your code as early as
possible. Forward thinking will save a surprising amount of time in the long run.

See the debugging overview (p. 1362) for further information.

Check Windows debug messages

Under Windows, it is worth running your program with DbgView

(ht t p: // ww. sysi nt er nal s. com running or some other program that shows
Windows-generated debug messages. It is possible it will show invalid handles being
used. You may have fun seeing what commercial programs cause these normally
hidden errors! Microsoft recommend using the debugging version of Windows, which
shows up even more problems. However, | doubt it is worth the hassle for most
applications. wxWindows is designed to minimize the possibility of such errors, but they
can still happen occasionally, slipping through unnoticed because they are not severe
enough to cause a crash.

Genetic mutation

If we had sophisticated genetic algorithm tools that could be applied to programming, we
could use them. Until then, a common -- if rather irrational -- technique is to just make
arbitrary changes to the code until something different happens. You may have an
intuition why a change will make a difference; otherwise, just try altering the order of
code, comment lines out, anything to get over an impasse. Obviously, this is usually a
last resort.

15

Chapter 5 Alphabetical class reference

wxAcceleratorEntry

An object used by an application wishing to create an accelerator table (p. 17).
Derived from

None

Include files

<wx/accel.h>

See also

wxAcceleratorTable (p. 17), wxWindow::SetAcceleratorTable (p. 1227)

wxAcceleratorEntry::wxAcceleratorEntry

wxAcceleratorEntry()

Default constructor.

wxAcceleratorEntry(int flags, int keyCode, int cmd)

Constructor.

Parameters

flags
One of wxACCEL_ALT, wxACCEL_SHIFT, wxACCEL_CTRL and
WXACCEL_NORMAL. Indicates which modifier key is held down.

keyCode
The keycode to be detected. See Keycodes (p. 1309) for a full list of keycodes.

cmd
The menu or control command identifier.

wxAcceleratorEntry::GetCommand

16

CHAPTER 5

int GetCommand() const

Returns the command identifier for the accelerator table entry.

wxAcceleratorEntry::GetFlags

int GetFlags() const

Returns the flags for the accelerator table entry.

wxAcceleratorEntry::GetKeyCode

int GetKeyCode() const

Returns the keycode for the accelerator table entry.

wxAcceleratorEntry::Set

void Set(int flags, int keyCode, int cmd)

Sets the accelerator entry parameters.

Parameters

flags
One of wxACCEL_ALT, wxACCEL_SHIFT, wxACCEL_CTRL and
WXACCEL_NORMAL. Indicates which modifier key is held down.

keyCode
The keycode to be detected. See Keycodes (p. 1309) for a full list of keycodes.

cmd
The menu or control command identifier.

wxAcceleratorTable

An accelerator table allows the application to specify a table of keyboard shortcuts for
menus or other commands. On Windows, menu or button commands are supported; on
GTK, only menu commands are supported.

The object wxNullAcceleratorTable is defined to be a table with no data, and is the
initial accelerator table for a window.

CHAPTER 5

Derived from
wxObiject (p. 750)
Include files
<wx/accel.h>

Example

wxAccel eratorEntry entries[4];

entries[0].Set (WKACCEL_CTRL, (int) "N, | D_NEW W NDOW ;
entries[1].Set (WACCEL_CTRL, (int) 'X, wxl D_EXIT);
entries[2].Set (wWwACCEL_SH FT, (int) "A', | D_ABQUT) ;
entries[3].Set (W<ACCEL_NORMAL, WKK_DELETE, wx| D_CUT) ;

wxAccel erat or Tabl e accel (4, entries);
franme- >Set Accel er at or Tabl e(accel) ;

Remarks

An accelerator takes precedence over normal processing and can be a convenient way
to program some event handling. For example, you can use an accelerator table to
enable a dialog with a multi-line text control to accept CTRL-Enter as meaning 'OK' (but
not in GTK at present).

See also

wxAcceleratorEntry (p. 16), wxWindow::SetAcceleratorTable (p. 1227)

wxAcceleratorTable::wxAcceleratorTable

wxAcceleratorTable()

Default constructor.

wxAcceleratorTable(const wxAcceleratorTable& bitmap)
Copy constructor.

wxAcceleratorTable(int n, wxAcceleratorEntry entries][])
Creates from an array of wxAcceleratorEntry (p. 16) objects.
wxAcceleratorTable(const wxString& resource)

Loads the accelerator table from a Windows resource (Windows only).

18

CHAPTER 5

Parameters

Number of accelerator entries.

entries
The array of entries.

resource
Name of a Windows accelerator.

wxPython note: The wxPython constructor accepts a list of wxAcceleratorEntry objects,

or 3-tuples consisting of flags, keyCode, and cmd values like you would construct
wxAcceleratorEntry objects with.

wxAcceleratorTable::~wxAcceleratorTable

~wxAcceleratorTable()

Destroys the wxAcceleratorTable object.

wxAcceleratorTable::Ok

bool Ok() const

Returns TRUE if the accelerator table is valid.

wxAcceleratorTable::operator =

wxAcceleratorTable& operator =(const wxAcceleratorTable& accel)

Assignment operator. This operator does not copy any data, but instead passes a
pointer to the data in accel and increments a reference counter. It is a fast operation.

Parameters

accel
Accelerator table to assign.

Return value

Returns reference to this object.

wxAcceleratorTable::operator ==

19

CHAPTER 5

bool operator ==(const wxAcceleratorTable& accel)

Equality operator. This operator tests whether the internal data pointers are equal (a fast
test).

Parameters

accel
Accelerator table to compare with

Return value

Returns TRUE if the accelerator tables were effectively equal, FALSE otherwise.

wxAcceleratorTable::operator !=

bool operator I=(const wxAcceleratorTable& accel)

Inequality operator. This operator tests whether the internal data pointers are unequal (a
fast test).

Parameters

accel
Accelerator table to compare with

Return value

Returns TRUE if the accelerator tables were unequal, FALSE otherwise.

wxActivateEvent

An activate event is sent when a window or application is being activated or deactivated.
Derived from

wxEvent (p. 377)
wxObiject (p. 750)

Include files
<wx/event.h>
Event table macros

To process an activate event, use these event handler macros to direct input to a

20

CHAPTER 5

member function that takes a wxActivateEvent argument.

EVT_ACTIVATE(func) Process a wxEVT_ACTIVATE event.
EVT_ACTIVATE_APP(func) Process a wxEVT_ACTIVATE_APP event.
Remarks

A top-level window (a dialog or frame) receives an activate event when is being
activated or deactivated. This is indicated visually by the title bar changing colour, and a
subwindow gaining the keyboard focus.

An application is activated or deactivated when one of its frames becomes activated, or
a frame becomes inactivate resulting in all application frames being inactive. (Windows

only)

See also

wxWindow::OnActivate (p. 1210), wxApp::OnActivate (p. 25), Event handling overview
(p. 1371)

wxActivateEvent::wxActivateEvent

wxActivateEvent(WXTYPE eventType = 0, bool active = TRUE, int id = 0)

Constructor.

wxActivateEvent::m_active

bool m_active

TRUE if the window or application was activated.

wxActivateEvent::GetActive

bool GetActive() const

Returns TRUE if the application or window is being activated, FALSE otherwise.

WXAPP

The wxApp class represents the application itself. It is used to:

21

CHAPTER 5

set and get application-wide properties;

implement the windowing system message or event loop;

initiate application processing via wxApp::Onlnit (p. 28);

allow default processing of events not handled by other objects in the
application.

You should use the macro IMPLEMENT_APP(appClass) in your application
implementation file to tell wxWindows how to create an instance of your application
class.

Use DECLARE_APP(appClass) in a header file if you want the wxGetApp function
(which returns a reference to your application object) to be visible to other files.

Derived from

wxEvtHandler (p. 380)
wxObiject (p. 750)

Include files
<wx/app.h>
See also

WXApp overview (p. 1335)

WXAPP::WXApp

void wxApp()

Constructor. Called implicitly with a definition of a wxApp object.

WXAPP::~WXAppP

void ~wxApp()

Destructor. Will be called implicitly on program exit if the wxApp object is created on the

stack.

WxApp::argc

int argc

Number of command line arguments (after environment-specific processing).

22

CHAPTER 5

WXApp::argv

char ** argv

Command line arguments (after environment-specific processing).

WXxApp::CreateLogTarget

virtual wxLog* CreateLogTarget()

Creates a wxLog class for the application to use for logging errors. The default
implementation returns a new wxLogGui class.

See also

wxLog (p. 655)

wxApp::Dispatch

void Dispatch()
Dispatches the next event in the windowing system event queue.

This can be used for programming event loops, e.g.

whi l e (app. Pendi ng())
Di spat ch();

See also

wxApp::Pending (p. 29)

WXApp::GetAppName

wxString GetAppName() const
Returns the application name.

Remarks

wxWindows sets this to a reasonable default before calling wxApp::Onlnit (p. 28), but the

application can reset it at will.

WXApp::GetAuto3D

23

CHAPTER 5

bool GetAuto3D() const
Returns TRUE if 3D control mode is on, FALSE otherwise.
See also

WxApp::SetAuto3D (p. 30)

wxApp::GetClassName

wxString GetClassName() const

Gets the class name of the application. The class name may be used in a platform
specific manner to refer to the application.

See also

wxApp::SetClassName (p. 30)

WXxApp::GetExitOnFrameDelete

bool GetExitFrameOnDelete() const

Returns TRUE if the application will exit when the top-level window is deleted, FALSE
otherwise.

See also

WxApp::SetExitOnFrameDelete (p. 31)

WxApp::GetTopWindow

wxWindow * GetTopWindow() const
Returns a pointer to the top window.
Remarks

If the top window hasn't been set using wxApp::SetTopWindow (p. 31), this function will
find the first top-level window (frame or dialog) and return that.

See also

SetTopWindow (p. 31)

24

CHAPTER 5

wWxApp::GetUseBestVisual

bool GetUseBestVisual() const

Returns TRUE if the application will use the best visual on systems that support different
visuals, FALSE otherwise.

See also

SetUseBestVisual (p. 32)

wWxApp::GetVendorName

wxString GetVendorName() const

Returns the application's vendor name.

wxApp::ExitMainLoop

void ExitMainLoop()

Call this to explicitly exit the main message (event) loop. You should normally exit the
main loop (and the application) by deleting the top window.

wxApp::Initialized

bool Initialized()

Returns TRUE if the application has been initialized (i.e. if wxApp::Onlnit (p. 28) has
returned successfully). This can be useful for error message routines to determine
which method of output is best for the current state of the program (some windowing
systems may not like dialogs to pop up before the main loop has been entered).

WXxApp::MainLoop

int MainLoop()

Called by wxWindows on creation of the application. Override this if you wish to provide
your own (environment-dependent) main loop.

Return value

Returns O under X, and the wParam of the WM_QUIT message under Windows.

WxApp::OnActivate

25

CHAPTER 5

void OnActivate(wxActivateEvent& event)

Provide this member function to know whether the application is being activated or
deactivated (Windows only).

See also

wxWindow::OnActivate (p. 1210), wxActivateEvent (p. 20)

WXApPP::OnExit

int OnEXxit()

Provide this member function for any processing which needs to be done as the
application is about to exit.

wWxApp::OnCharHook

void OnCharHook(wxKeyEvent& event)

This event handler function is called (under Windows only) to allow the window to
intercept keyboard events before they are processed by child windows.

Parameters

event
The keypress event.

Remarks
Use the wxEVT_CHAR_HOOK macro in your event table.

If you use this member, you can selectively consume keypress events by calling
wxEvent::Skip (p. 380) for characters the application is not interested in.

See also
wxKeyEvent (p. 610), wxWindow::OnChar (p. 1211), wxWindow::OnCharHook (p. 1212),
wxDialog::OnCharHook (p. 316)

wxApp::OnFatalException

void OnFatalException()

This function may be called if something fatal happens: an unhandled exception under
Win32 or a a fatal signal under Unix, for example. However, this will not happen by

26

CHAPTER 5

default: you have to explicitly call wxHandleFatalExceptions (p. 1284) to enable this.
Generally speaking, this function should only show a message to the user and return.
You may attempt to save unsaved data but this is not guaranteed to work and, in fact,
probably won't.

See also

wxHandleFatalExcetions (p. 1284)

wxApp::Onidle

void Onldle(wxIdleEvent& event)

Override this member function for any processing which needs to be done when the
application is idle. You should call wxApp::Onldle from your own function, since this
forwards Onldle events to windows and also performs garbage collection for windows
whose destruction has been delayed.

wxWindows' strategy for Onldle processing is as follows. After pending user interface
events for an application have all been processed, wxWindows sends an Onldle event to
the application object. wxApp::Onldle itself sends an Onldle event to each application
window, allowing windows to do idle processing such as updating their appearance. If
either wxApp::Onldle or a window Onldle function requested more time, by caling
wxldleEvent::RequestMore (p. 561), wxWindows will send another Onldle event to the
application object. This will occur in a loop until either a user event is found to be
pending, or Onldle requests no more time. Then all pending user events are processed
until the system goes idle again, when Onldle is called, and so on.

See also

wxWindow::Onldle (p. 1217), wxldleEvent (p. 560), wxWindow::SendldleEvents (p. 29)

wWxApp::OnEndSession

void OnEndSession(wxCloseEvent& event)

This is an event handler function called when the operating system or GUI session is
about to close down. The application has a chance to silently save information, and can
optionally close itself.

Use the EVT_END_SESSION event table macro to handle query end session events.

The default handler calls wxWindow::Close (p. 1195) with a TRUE argument (forcing the
application to close itself silently).

Remarks

27

CHAPTER 5

Under X, OnEndSession is called in response to the 'die' event.

Under Windows, OnEndSession is called in response to the WM_ENDSESSION
message.

See also
wxWindow::Close (p. 1195), wxWindow::OnCloseWindow (p. 1213), wxCloseEvent (p.
125), wxApp::OnQueryEndSession (p. 28)

wWxApp::Onlinit

bool Oninit()

This must be provided by the application, and will usually create the application's main
window, optionally calling wxApp::SetTopWindow (p. 31).

Return TRUE to continue processing, FALSE to exit the application.

WXxAppP::OnQueryEndSession

void OnQueryEndSession(wxCloseEvent& event)

This is an event handler function called when the operating system or GUI session is
about to close down. Typically, an application will try to save unsaved documents at this
point.

If wxCloseEvent::CanVeto (p. 125) returns TRUE, the application is allowed to veto the
shutdown by calling wxCloseEvent::Veto (p. 126). The application might veto the
shutdown after prompting for documents to be saved, and the user has cancelled the
save.

Use the EVT_QUERY_END_SESSION event table macro to handle query end session
events.

You should check whether the application is forcing the deletion of the window using
wxCloseEvent::GetForce (p. 126). If this is TRUE, destroy the window using
wxWindow::Destroy (p. 1197). If not, it is up to you whether you respond by destroying
the window.

The default handler calls wxWindow::Close (p. 1195) on the top-level window, and
vetoes the shutdown if Close returns FALSE. This will be sufficient for many
applications.

Remarks

Under X, OnQueryEndSession is called in response to the 'save session' event.

28

CHAPTER 5

Under Windows, OnQueryEndSession is called in response to the
WM_QUERYENDSESSION message.

See also

wxWindow::Close (p. 1195), wxWindow::OnCloseWindow (p. 1213), wxCloseEvent (p.
125), wxApp::OnEndSession (p. 27)

WxApp::ProcessMessage

bool ProcessMessage(MSG *msg)

Windows-only function for processing a message. This function is called from the main
message loop, checking for windows that may wish to process it. The function returns
TRUE if the message was processed, FALSE otherwise. If you use wxWindows with
another class library with its own message loop, you should make sure that this function
is called to allow wxWindows to receive messages. For example, to allow co-existance
with the Microsoft Foundation Classes, override the PreTranslateMessage function:

/1 Provide wxW ndows nessage | oop conpatibility
BOOL CTheApp: : PreTransl at eMessage(MSG *ne(Q)

if (wWwxTheApp && wxTheApp->ProcessMessage(nsg))
return TRUE;

el se
return CW nApp: : PreTransl at eMessage(nsg) ;

wxApp::Pending

bool Pending()

Returns TRUE if unprocessed events are in the window system event queue.
See also

wxApp::Dispatch (p. 23)

wxApp::SendldleEvents

bool SendldleEvents()
Sends idle events to all top-level windows.
bool SendldleEvents(wxWindow* win)

Sends idle events to a window and its children.

29

CHAPTER 5

Remarks

These functions poll the top-level windows, and their children, for idle event processing.
If TRUE is returned, more Onldle processing is requested by one or more window.

See also

wxApp::Onldle (p. 27), wxWindow::Onldle (p. 1217), wxldleEvent (p. 560)

WXApp::SetAppName

void SetAppName(const wxString& name)

Sets the name of the application. The name may be used in dialogs (for example by the
document/view framework). A default name is set by wxWindows.

See also

wxApp::GetAppName (p. 23)

WXApp::SetAuto3D

void SetAuto3D(const bool auto3D)

Switches automatic 3D controls on or off.

Parameters

auto3D
If TRUE, all controls will be created with 3D appearances unless overridden for a
control or dialog. The default is TRUE

Remarks

This has an effect on Windows only.

See also

WxApp::GetAuto3D (p. 23)

wxApp::SetClassName

void SetClassName(const wxString& name)

Sets the class name of the application. This may be used in a platform specific manner
to refer to the application.

30

CHAPTER 5

See also

wxApp::GetClassName (p. 24)

WXApp::SetExitOnFrameDelete

void SetExitOnFrameDelete(bool flag)

Allows the programmer to specify whether the application will exit when the top-level
frame is deleted.

Parameters
flag

If TRUE (the default), the application will exit when the top-level frame is deleted. If
FALSE, the application will continue to run.

WXxApp::SetTopWindow

void SetTopWindow(wxWindow* window)

Sets the 'top' window. You can call this from within wxApp::Oninit (p. 28) to let
wxWindows know which is the main window. You don't have to set the top window; it is
only a convenience so that (for example) certain dialogs without parents can use a
specific window as the top window. If no top window is specified by the application,
wxWindows just uses the first frame or dialog in its top-level window list, when it needs
to use the top window.

Parameters

window
The new top window.

See also

wxApp::GetTopWindow (p. 24), wxApp::Onlnit (p. 28)

wxApp::SetVendorName

void SetVendorName(const wxString& name)

Sets the name of application's vendor. The name will be used in registry access. A
default name is set by wxWindows.

See also

WxApp::GetVendorName (p. 25)

31

CHAPTER 5

WxApp::GetStdicon

virtual wxlcon GetStdlcon(int which) const

Returns the icons used by wxWindows internally, e.g. the ones used for message
boxes. This function is used internally and can be overridden by the user to change the
default icons.

Parameters

which
One of the wxICON_XXX specifies which icon to return.

See wxMessageBox (p. 1266) for a list of icon identifiers.

wWxApp::SetUseBestVisual

void SetUseBestVisual(bool flag)

Allows the programmer to specify whether the application will use the best visual on
systems that support several visual on the same display. This is typically the case under
Solaris and IRIX, where the default visual is only 8-bit whereas certain appications are
supposed to run in TrueColour mode.

Note that this function has to be called in the constructor of the wxApp instance and
won't have any effect when called later on.

This function currently only has effect under GTK.
Parameters

flag
If TRUE, the app will use the best visual.

WXArray

This section describes the so called dynamic arrays. This is a C array-like data structure
i.e. the member access time is constant (and not linear according to the number of
container elements as for linked lists). However, these arrays are dynamic in the sense
that they will automatically allocate more memory if there is not enough of it for adding a
new element. They also perform range checking on the index values but in debug mode
only, so please be sure to compile your application in debug mode to use it (see
debugging overview (p. 1362) for details). So, unlike the arrays in some other
languages, attempt to access an element beyond the arrays bound doesn't automatically

32

CHAPTER 5

expand the array but provokes an assertion failure instead in debug build and does
nothing (except possibly crashing your program) in the release build.

The array classes were designed to be reasonably efficient, both in terms of run-time
speed and memory consumption and the executable size. The speed of array item
access is, of course, constant (independent of the number of elements) making them
much more efficient than linked lists (wxList (p. 619)). Adding items to the arrays is also
implemented in more or less constant time - but the price is preallocating the memory in
advance. In the memory management (p. 35) section you may find some useful hints
about optimizing wxArray memory usage. As for executable size, all wxArray functions
are inline, so they do not take any space at all.

wxWindows has three different kinds of array. All of them derive from wxBaseArray class
which works with untyped data and can not be used directly. The standard macros
WX_DEFINE_ARRAY(), WX_DEFINE_SORTED_ARRAY() and
WX_DEFINE_OBJARRAY/() are used to define a new class deriving from it. The classes
declared will be called in this documentation wxArray, wxSortedArray and wxObjArray
but you should keep in mind that no classes with such names actually exist, each time
you use one of WX_DEFINE_XXXARRAY macro you define a class with a new name. In
fact, these names are "template" names and each usage of one of the macros
mentioned above creates a template specialization for the given element type.

wxArray is suitable for storing integer types and pointers which it does not treat as
objects in any way, i.e. the element pointed to by the pointer is not deleted when the
element is removed from the array. It should be noted that all of wxArray's functions are
inline, so it costs strictly nothing to define as many array types as you want (either in
terms of the executable size or the speed) as long as at least one of them is defined and
this is always the case because wxArrays are used by wxWindows internally. This class
has one serious limitation: it can only be used for storing integral types (bool, char, short,
int, long and their unsigned variants) or pointers (of any kind). An attempt to use with
objects of sizeof() greater than sizeof(long) will provoke a runtime assertion failure,
however declaring a wxArray of floats will not (on the machines where sizeof(float) <=
sizeof(long)), yet it will not work, please use wxObjArray for storing floats and doubles
(NB: a more efficient wxArrayDouble class is scheduled for the next release of
wxWindows).

wxSortedArray is a wxArray variant which should be used when searching in the array is
a frequently used operation. It requires you to define an additional function for comparing
two elements of the array element type and always stores its items in the sorted order
(according to this function). Thus, itis Index() (p. 41) function execution time is
O(log(N)) instead ofO(N) for the usual arrays but the Add() (p. 40) method is slower: it is
O(log(N)) instead of constant time (neglecting time spent in memory allocation routine).
However, in a usual situation elements are added to an array much less often than
searched inside it, so wxSortedArray may lead to huge performance improvements
compared to wxArray. Finally, it should be noticed that, as wxArray, wxSortedArray can
be only used for storing integral types or pointers.

wxObijArray class treats its elements like "objects". It may delete them when they are
removed from the array (invoking the correct destructor) and copies them using the
objects copy constructor. In order to implement this behaviour the definition of the
wxObjArray arrays is split in two parts: first, you should declare the new wxObjArray

33

CHAPTER 5

class using WX_DECLARE_OBJARRAY() macro and then you must include the file
defining the implementation of template type: <wx/arrimpl.cpp> and define the array
class with WX_DEFINE_OBJARRAY() macro from a point where the full (as opposed to
‘forward") declaration of the array elements class is in scope. As it probably sounds very
complicated here is an example:

#i ncl ude <wx/dynarray. h>

/1 we must forward declare the array because it is used inside the
cl ass

/1 declaration

class MyDirectory;

cl ass MyFil e;

/1 this defines two new types: ArrayOfDirectories and ArrayOf Fil es
whi ch can be

/1 now used as shown bel ow

WK _DECLARE_OBJARRAY(MyDirectory, ArrayOfDirectories);

WK_DECLARE _OBJARRAY(MyFi | e, ArrayOfFil es);

class MyDirectory

{

ArrayOrDirectories msubdirectories; // all subdirectories
ArrayOFil es mfiles; /] all files in this directory

b

/1 now that we have MyDirectory declaration in scope we may finish the
/1 definition of ArrayODirectories -- note that this expands into sone
C++

/1 code and so should only be conpiled once (i.e., don't put this in

t he

/1 header, but into a source file or you will get linkin errors)
#include <wx/arrinpl.cpp>// this is a magic incantation which nust be
done!

WK_DEFI NE_ OBJARRAY(ArrayOrF Di rectori es);

[/ that's all!
It is not as elegant as writing

typedef std::vector<MyDirectory> ArrayODirectories;

but is not that complicated and allows the code to be compiled with any, however dumb,
C++ compiler in the world.

Things are much simpler for wxArray and wxSortedArray however: it is enough just to
write

WK_DEFI NE_ARRAY(MyDirectory *, ArrayCOfDirectories);
WK_DEFI NE_SORTED_ARRAY(MWFile *, ArrayOFiles);

See also:

CHAPTER 5

Container classes overview (p. 1356), wxList (p. 619)
Include files

<wx/dynarray.h> for wxArray and wxSortedArray and additionally <wx/arrimpl.cpp> for
wxObjArray.

Macros for template array definition

To use an array you must first define the array class. This is done with the help of the
macros in this section. The class of array elements must be (at least) forward declared
for WX_DEFINE_ARRAY, WX_DEFINE_SORTED_ARRAY and
WX_DECLARE_OBJARRAY macros and must be fully declared before you use

WX _DEFINE_OBJARRAY macro.

WX_DEFINE_ARRAY (p. 36)
WX_DEFINE_EXPORTED_ARRAY (p. 36)
WX_DEFINE_SORTED_ARRAY (p. 37)
WX_DEFINE_SORTED_EXPORTED_ARRAY (p. 37)
WX_DECLARE_EXPORTED_OBJARRAY (p. 37)
WX_DEFINE_OBJARRAY (p. 38)

Constructors and destructors

Array classes are 100% C++ objects and as such they have the appropriate copy
constructors and assignment operators. Copying wxArray just copies the elements but
copying wxObjArray copies the arrays items. However, for memory-efficiency sake,
neither of these classes has virtual destructor. It is not very important for wxArray which
has trivial destructor anyhow, but it does mean that you should avoid deleting
wxObjArray through a wxBaseArray pointer (as you would never use wxBaseArray
anyhow it shouldn't be a problem) and that you should not derive your own classes from
the array classes.

wxArray default constructor (p. 39)

wxArray copy constructors and assignment operators (p. 39)
~wxArray (p. 40)

Memory management

Automatic array memory management is quite trivial: the array starts by preallocating
some minimal amount of memory (defined by WX_ARRAY_DEFAULT_INITIAL_SIZE)
and when further new items exhaust already allocated memory it reallocates it adding
50% of the currently allocated amount, but no more than some maximal number which is
defined by ARRAY_MAXSIZE_INCREMENT constant. Of course, this may lead to some

35

CHAPTER 5

memory being wasted (ARRAY_MAXSIZE_INCREMENT in the worst case, i.e. 4Kb in
the current implementation), so the Shrink() (p. 43) function is provided to unallocate the
extra memory. The Alloc() (p. 40) function can also be quite useful if you know in
advance how many items you are going to put in the array and will prevent the array
code from reallocating the memory more times than needed.

Alloc (p. 40)
Shrink (p. 43)

Number of elements and simple item access

Functions in this section return the total number of array elements and allow to retrieve
them - possibly using just the C array indexing [] operator which does exactly the same
as Item() (p. 42) method.

Count (p. 41)
GetCount (p. 41)
ISEmpty (p. 42)
Item (p. 42)

Last (p. 42)

Adding items

Add (p. 40)
Insert (p. 42)
WX_APPEND_ARRAY (p. 38)

Removing items

WX_CLEAR_ARRAY (p. 39)
Empty (p. 41)

Clear (p. 40)

RemoveAt (p. 43)

Remove (p. 43)

Searching and sorting

Index (p. 41)
Sort (p. 43)

WX_DEFINE_ARRAY

WX_DEFINE_ARRAY(T, name)

36

CHAPTER 5

WX_DEFINE_EXPORTED_ARRAY(T, name)

This macro defines a new array class hamed name and containing the elements of type
T. The second form is used when compiling DLL under Windows and array needs to be
visible outside the DLL. Example:

WK_DEFI NE_ARRAY(i nt, wxArraylnt);

cl ass Myd ass;
WK_DEFI NE_ARRAY(M/C ass *, wxArrayOf Myd ass) ;

Note that wxWindows predefines the following standard array classes: wxArraylnt,
wxArrayLong and wxArrayPtrVoid.

WX_DEFINE_SORTED_ARRAY

WX_DEFINE_SORTED_ARRAY(T, name)
WX_DEFINE_SORTED_EXPORTED_ARRAY(T, name)

This macro defines a new sorted array class named name and containing the elements
of type T. The second form is used when compiling DLL under Windows and array
needs to be visible outside the DLL.

Example:

WK_DEFI NE_SORTED ARRAY(i nt, wxSortedArraylnt);

cl ass My d ass;
WK_DEFI NE_SORTED_ARRAY(M/Cl ass *, wxArrayOf Myd ass);

You will have to initialize the objects of this class by passing a comparison function to
the array object constructor like this:

int Conparelnts(int nl, int n2)
{

}
wxSort edArrayl nt sorted(Conparelnts);

return nl - n2;

i nt ConpareMyC assObj ects(MyC ass *itenl, M/Class *itenR)

/1 sort the itenms by their address...
return Stricnp(itenl->Cet Address(), itenR->CGetAddress());

}
WXAr raytf MyCl ass anot her (Conpar eMyd assbj ect s) ;

WX_DECLARE_OBJARRAY

37

CHAPTER 5

WX_DECLARE_OBJARRAY(T, name)

WX_DECLARE_EXPORTED_OBJARRAY(T, name)

This macro declares a new object array class named name and containing the elements
of type T. The second form is used when compiling DLL under Windows and array
needs to be visible outside the DLL.

Example:

cl ass Myd ass;
WK_DEFI NE_OBJARRAY(MyCl ass, wxArrayOf MyC ass); // note: not "M ass

* 1)

You must use WX_DEFINE_OBJARRAY() (p. 38) macro to define the array class -
otherwise you would get link errors.

WX_DEFINE_OBJARRAY

WX_DEFINE_OBJARRAY (name)

This macro defines the methods of the array class name not defined by the
WX_DECLARE_OBJARRAY() (p. 37) macro. You must include the file <wx/arrimpl.cpp>
before using this macro and you must have the full declaration of the class of array
elements in scope! If you forget to do the first, the error will be caught by the compiler,
but, unfortunately, many compilers will not give any warnings if you forget to do the
second - but the objects of the class will not be copied correctly and their real destructor
will not be called.

Example of usage:

// first declare the cl ass!
cl ass Myd ass

{

public:
MyCl ass(const Myd ass&);
virtual ~Md ass();

i

#i ncl ude <wx/arrinpl.cpp>
WK_DEFI NE_OBJARRAY(WxAr rayO>f Myl ass) ;

WX_APPEND_ARRAY

void WX_APPEND_ARRAY (wxArray& array, wxArray& other)

38

CHAPTER 5

This macro may be used to append all elements of the other array to the array. The two
arrays must be of the same type.

WX_CLEAR_ARRAY

void WX_CLEAR_ARRAY (wxArray& array)

This macro may be used to delete all elements of the array before emptying it. It can not
be used with wxObjArrays - but they will delete their elements anyhow when you call

Empty().

Default constructors

wxArray()

wxObjArray()

Default constructor initializes an empty array object.

wxSortedArray(int (*)(T first, T second)compareFunction)

There is no default constructor for wxSortedArray classes - you must initialize it with a
function to use for item comparison. It is a function which is passed two arguments of
type T where T is the array element type and which should return a negative, zero or

positive value according to whether the first element passed to it is less than, equal to or
greater than the second one.

WxArray copy constructor and assignment operator

wxArray(const wxArray& array)

wxSortedArray(const wxSortedArray& array)

wxObjArray(const wxObjArray& array)

wWxArray& operator=(const wxArray& array)

wxSortedArray& operator=(const wxSortedArray& array)

wxObjArray& operator=(const wxObjArray& array)

The copy constructors and assignment operators perform a shallow array copy (i.e. they
don't copy the objects pointed to even if the source array contains the items of pointer

type) for wxArray and wxSortedArray and a deep copy (i.e. the array element are copied
too) for wxObjArray.

39

CHAPTER 5

WxArray::~wWxArray

~wWxArray()
~wxSortedArray()
~wxObjArray()

The wxObjArray destructor deletes all the items owned by the array. This is not done by
wxArray and wxSortedArray versions - you may use WX_CLEAR_ARRAY (p. 39) macro
for this.

wxArray::Add

void Add(T item)

void Add(T *item)

void Add(T &item)

Appends a new element to the array (where T is the type of the array elements.)

The first version is used with wxArray and wxSortedArray. The second and the third are
used with wxObjArray. There is an important difference between them: if you give a
pointer to the array, it will take ownership of it, i.e. will delete it when the item is deleted
from the array. If you give a reference to the array, however, the array will make a copy
of the item and will not take ownership of the original item. Once again, it only makes
sense for wxObjArrays because the other array types never take ownership of their
elements.

You may also use WX_APPEND_ARRAY (p. 38) macro to append all elements of one
array to another one.

wxArray::Alloc

void Alloc(size_t count)

Preallocates memory for a given number of array elements. It is worth calling when the
number of items which are going to be added to the array is known in advance because
it will save unneeded memory reallocation. If the array already has enough memory for
the given number of items, nothing happens.

wxArray::Clear

void Clear()

This function does the same as Empty() (p. 41) and additionally frees the memory

40

CHAPTER 5

allocated to the array.

WxArray::Count

size_t Count() const

Same as GetCount() (p. 41). This function is deprecated - it exists only for compatibility.

wxObjArray::Detach

T * Detach(size_t index)

Removes the element from the array, but, unlike, Remove() (p. 43) doesn't delete it. The
function returns the pointer to the removed element.

WxArray::Empty

void Empty()
Empties the array. For wxObjArray classes, this destroys all of the array elements. For

wxArray and wxSortedArray this does nothing except marking the array of being empty -
this function does not free the allocated memory, use Clear() (p. 40) for this.

WxArray::GetCount

size_t GetCount() const

Return the number of items in the array.

wxArray::Index

int Index(T& item, bool searchFromEnd = FALSE)
int Index(T& item)

The first version of the function is for wxArray and wxObjArray, the second is for
wxSortedArray only.

Searches the element in the array, starting from either beginning or the end depending
on the value of searchFromEnd parameter. wxNOT_FOUND is returned if the element is
not found, otherwise the index of the element is returned.

Linear search is used for the wxArray and wxObjArray classes but binary search in the
sorted array is used for wxSortedArray (this is why searchFromEnd parameter doesn't
make sense for it).

41

CHAPTER 5

NB: even for wxObjArray classes, the operator==() of the elements in the array is not
used by this function. It searches exactly the given element in the array and so will only
succeed if this element had been previously added to the array, but fail even if another,
identical, element is in the array.

WxArray::Insert

void Insert(T item, size_tn)
void Insert(T *item, size_t n)
void Insert(T &item, size_t n)

Insert a new item into the array before the item n - thus, Insert(something, Ou) will insert
an item in such way that it will become the first array element.

Please see Add() (p. 40) for explanation of the differences between the overloaded
versions of this function.

WxArray::IsEmpty

bool IsEmpty() const

Returns TRUE if the array is empty, FALSE otherwise.

WXArray::ltem

T& Item(size_t index) const

Returns the item at the given position in the array. If index is out of bounds, an assert
failure is raised in the debug builds but nothing special is done in the release build.

The returned value is of type "reference to the array element type" for all of the array
classes.

WxArray::Last

T& Last() const

Returns the last element in the array, i.e. is the same as Item(GetCount() - 1). An assert
failure is raised in the debug mode if the array is empty.

The returned value is of type "reference to the array element type" for all of the array
classes.

42

CHAPTER 5

wxArray::Remove

Remove(T item)

Removes an element from the array by value: the first item of the array equal to item is
removed, an assert failure will result from an attempt to remove an item which doesn't
exist in the array.

When an element is removed from wxObijArray it is deleted by the array - use Detach()
(p. 41) if you don't want this to happen. On the other hand, when an object is removed
from a wxArray nothing happens - you should delete it manually if required:

T *item= array[n];
delete item
array. Remove(n)

See also WX_CLEAR_ARRAY (p. 39) macro which deletes all elements of a wxArray
(supposed to contain pointers).

WxArray::RemoveAt

RemoveAt(size_t index)

Removes an element from the array by index. When an element is removed from
wxObijArray it is deleted by the array - use Detach() (p. 41) if you don't want this to
happen. On the other hand, when an object is removed from a wxArray nothing happens
- you should delete it manually if required:

T *item= array[n];
delete item
array. RemoveAt (n)

See also WX_CLEAR_ARRAY (p. 39) macro which deletes all elements of a wxArray
(supposed to contain pointers).

wxArray::Shrink

void Shrink()
Frees all memory unused by the array. If the program knows that no new items will be

added to the array it may call Shrink() to reduce its memory usage. However, if a new
item is added to the array, some extra memory will be allocated again.

WxArray::Sort

void Sort(CMPFUNC<T> compareFunction)

43

CHAPTER 5

The notation CMPFUNC<T> should be read as if we had the following declaration:
tenplate int COWFUNC(T *first, T *second);

where T is the type of the array elements. l.e. it is a function returning int which is
passed two arguments of type T *.

Sorts the array using the specified compare function: this function should return a
negative, zero or positive value according to whether the first element passed to it is less
than, equal to or greater than the second one.

wxSortedArray doesn't have this function because it is always sorted.

wxArrayString

wxArrayString is an efficient container for storing wxString (p. 1011) objects. It has the
same features as all wxArray (p. 32) classes, i.e. it dynamically expands when new
items are added to it (so it is as easy to use as a linked list), but the access time to the
elements is constant, instead of being linear in number of elements as in the case of
linked lists. It is also very size efficient and doesn't take more space than a C array
wxString[] type (wxArrayString uses its knowledge of internals of wxString class to
achieve this).

This class is used in the same way as other dynamic arrays (p. 32), except that no
WX_DEFINE_ARRAY declaration is needed for it. When a string is added or inserted in
the array, a copy of the string is created, so the original string may be safely deleted
(e.g. if it was a char * pointer the memory it was using can be freed immediately after
this). In general, there is no need to worry about string memory deallocation when using
this class - it will always free the memory it uses itself.

The references returned by Item (p. 48), Last (p. 48) or operator(] (p. 46) are not
constant, so the array elements may be modified in place like this

array. Last (). MakeUpper () ;

There is also a varian of wxArrayString called wxSortedArrayString which has exactly
the same methods as wxArrayString, but which always keeps the string in it in
(alphabetical) order. wxSortedArrayString uses binary search in its Index (p. 47) function
(insteadf of linear search for wxArrayString::Index) which makes it much more efficient if
you add strings to the array rarely (because, of course, you have to pay for Index()
efficiency by having Add() be slower) but search for them often. Several methods should
not be used with sorted array (basicly, all which break the order of items) which is
mentioned in their description.

Final word: none of the methods of wxArrayString is virtual including its destructor, so
this class should not be used as a base class.

Derived from

CHAPTER 5

Although this is not true strictly speaking, this class may be considered as a
specialization of wxArray (p. 32) class for the wxString member data: it is not
implemented like this, but it does have all of the wxArray functions.

Include files

<wx/string.h>

See also

wxArray (p. 32), wxString (p. 1011), wxString overview (p. 1338)

WxArrayString::wxArrayString

wxArrayString()
wxArrayString(const wxArrayString& array)
Default and copy constructors.

Note that when an array is assigned to a sorted array, its contents is automatically
sorted during construction.

WxArrayString::~wxArrayString

~wxArrayString()

Destructor frees memory occupied by the array strings. For the performance reasons it
is not virtual, so this class should not be derived from.

wxArrayString::operator=

wWxArrayString & operator =(const wxArrayString& array)

Assignment operator.

WxATrrayString::operator==

bool operator ==(const wxArrayString& array) const

Compares 2 arrays respecting the case. Returns TRUE only if the arrays have the same
number of elements and the same strings in the same order.

45

CHAPTER 5

wxArrayString::operator!=

bool operator !=(const wxArrayString& array) const

Compares 2 arrays respecting the case. Returns TRUE if the arrays have different
number of elements or if the elements don't match pairwise.

wxArrayString::operator(]

wxString& operator[](size_t nindex)

Return the array element at position nindex. An assert failure will result from an attempt
to access an element beyond the end of array in debug mode, but no check is done in
release mode.

This is the operator version of Item (p. 48) method.

wxArrayString::Add

size_t Add(const wxString& str)

Appends a new item to the array and return the index of th new item in the array.
Warning: For sorted arrays, the index of the inserted item will not be, in general, equal
to GetCount() (p. 47) - 1 because the item is inserted at the correct position to keep the

array sorted and not appended.

See also: Insert (p. 47)

wxArrayString::Alloc

void Alloc(size_t nCount)

Preallocates enough memory to store nCount items. This function may be used to
improve array class performance before adding a known number of items consecutively.

See also: Dynamic array memory management (p. 35)

wxArrayString::Clear

void Clear()
Clears the array contents and frees memory.

See also: Empty (p. 47)

46

CHAPTER 5

wxArrayString::Count

size_t Count() const

Returns the number of items in the array. This function is deprecated and is for
backwards compatibility only, please use GetCount (p. 47) instead.

WxATrrayString::Empty

void Empty()

Empties the array: after a call to this function GetCount (p. 47) will return 0. However,
this function does not free the memory used by the array and so should be used when
the array is going to be reused for storing other strings. Otherwise, you should use Clear
(p. 46) to empty the array and free memory.

wxArrayString::GetCount

size_t GetCount() const

Returns the number of items in the array.

wxArrayString::Index

int Index(const char * sz, bool bCase = TRUE, bool bFromEnd = FALSE)

Search the element in the array, starting from the beginning ifbFromEnd is FALSE or
from end otherwise. If bCase, comparison is case sensitive (default), otherwise the case
is ignored.

This function uses linear search for wxArrayString and binary search for
wxSortedArrayString, but it ignores the bCase and bFromEnd parameters in the latter
case.

Returns index of the first item matched or wxNOT_FOUND if there is no match.

wxArrayString::Insert

void Insert(const wxString& str, size_t nindex)

Insert a new element in the array before the position nindex. Thus, for example, to insert
the string in the beginning of the array you would write

Insert("foo", 0);

47

CHAPTER 5

If nindex is equal to GetCount() + 1 this function behaves as Add (p. 46).

Warning: this function should not be used with sorted arrays because it could break the
order of items and, for example, subsequent calls to Index() (p. 47) would then not work!

wxArrayString::IsEmpty

ISEmpty()

Returns TRUE if the array is empty, FALSE otherwise. This function returns the same
result as GetCount() == 0 but is probably easier to read.

wxArrayString::ltem

wxString& Item(size_t nindex) const

Return the array element at position nindex. An assert failure will result from an attempt
to access an element beyond the end of array in debug mode, but no check is done in
release mode.

See also operator[] (p. 46) for the operator version.

wxArrayString::Last

Last()

Returns the last element of the array. Attempt to access the last element of an empty

array will result in assert failure in debug build, however no checks are done in release
mode.

wxArrayString::Remove

void Remove(const char * sz)

Removes the first item matching this value. An assert failure is provoked by an attempt
to remove an element which does not exist in debug build.

See also: Index (p. 47)
void Remove(size_t nindex)

Removes the item at given position.

wxArrayString::Shrink

48

CHAPTER 5

void Shrink()

Releases the extra memory allocated by the array. This function is useful to minimize the
array memory consumption.

See also: Alloc (p. 46), Dynamic array memory management (p. 35)

wxArrayString::Sort

void Sort(bool reverseOrder = FALSE)

Sorts the array in alphabetical order or in reverse alphabetical order if reverseOrder is
TRUE.

Warning: this function should not be used with sorted array because it could break the
order of items and, for example, subsequent calls to Index() (p. 47) would then not work!

void Sort(CompareFunction compareFunction)

Sorts the array using the specified compareFunction for item
comparison.CompareFunction is defined as a function taking two const wxString&
parameters and returning an int value less than, equal to or greater than O if the first
string is less than, equal to or greater than the second one.

Example
The following example sorts strings by their length.

static int ConpareStringLen(const wxString& first, const wxString&
second)

{
}

return first.length() - second.length();

WXArrayString array;

array. Add("one");
array. Add("two");
array. Add("three");
array. Add("four");

array. Sort (ConpareStringlLen);

Warning: this function should not be used with sorted array because it could break the
order of items and, for example, subsequent calls to Index() (p. 47) would then not work!

49

CHAPTER 5

wxAutomationObject

The wxAutomationObiject class represents an OLE automation object containing a
single data member, an IDispatch pointer. It contains a number of functions that make it
easy to perform automation operations, and set and get properties. The class makes
heavy use of the wxVariant (p. 1174) class.

The usage of these classes is quite close to OLE automation usage in Visual Basic. The
API is high-level, and the application can specify multiple properties in a single string.

The following example gets the current Excel instance, and if it exists, makes the active
cell bold.

wxAut omat i onCbj ect excel Qbj ect ;
i f (excel Object. Getlnstance("Excel.Application"))
excel oj ect. Put Property("ActiveCell.Font.Bold", TRUE);

Note that this class works under Windows only, and currently only for Visual C++.
Derived from

wxObiject (p. 750)

Include files

<wx/msw/ole/automtn.h>

See also

wxVariant (p. 1174)

wxAutomationObject::wxAutomationObject

wxAutomationObject(WXIDISPATCH* dispatchPtr = NULL)

Constructor, taking an optional IDispatch pointer which will be released when the object
is deleted.

wxAutomationObject::~wxAutomationObject

~wxAutomationObject()

Destructor. If the internal IDispatch pointer is non-null, it will be released.

50

CHAPTER 5

wxAutomationObject::CallMethod

wxVariant CallMethod(const wxString& method, int noArgs, wxVariant args[]) const
wxVariant CallMethod(const wxString& method, ...) const

Calls an automation method for this object. The first form takes a method name, number
of arguments, and an array of variants. The second form takes a method name and zero
to six constant references to variants. Since the variant class has constructors for the
basic data types, and C++ provides temporary objects automatically, both of the
following lines are syntactically valid:

wxVariant res = obj.Call Method("Sunt', wxVariant(1.2),
wxVari ant (3. 4));
wxVariant res = obj.Call Method("Suni', 1.2, 3.4);

Note that method can contain dot-separated property names, to save the application
needing to call GetProperty several times using several temporary objects. For example:

obj ect. Cal | Met hod(" Acti veCel | . Font. ShowDi al og", "My caption");

wxAutomationObject::Createlnstance

bool Createlnstance(const wxString& classld) const

Creates a new object based on the class id, returning TRUE if the object was
successfully created, or FALSE if not.

wxAutomationObject::GetDispatchPtr

IDispatch* GetDispatchPtr() const

Gets the IDispatch pointer.

wxAutomationObject::Getlnstance

bool Getinstance(const wxString& classld) const

Retrieves the current object associated with a class id, and attaches the IDispatch
pointer to this object. Returns TRUE if a pointer was succesfully retrieved, FALSE

51

CHAPTER 5

otherwise.
Note that this cannot cope with two instances of a given OLE object being active

simultaneously, such as two copies of Excel running. Which object is referenced cannot
currently be specified.

wxAutomationObject::GetObject

bool GetObject(wxAutomationObject&obj const wxString& property, int noArgs = 0,
wxVariant args[] = NULL) const

Retrieves a property from this object, assumed to be a dispatch pointer, and initialises
obj with it. To avoid having to deal with IDispatch pointers directly, use this function in
preference to wxAutomationObject::GetProperty (p. 52) when retrieving objects from
other objects.

Note that an IDispatch pointer is stored as a void* pointer in wxVariant objects.

See also

wxAutomationObject::GetProperty (p. 52)

wxAutomationObject::GetProperty

wxVariant GetProperty(const wxString& property, int noArgs, wxVariant args[])
const

wxVariant GetProperty(const wxString& property, ...) const

Gets a property value from this object. The first form takes a property name, number of
arguments, and an array of variants. The second form takes a property name and zero
to six constant references to variants. Since the variant class has constructors for the
basic data types, and C++ provides temporary objects automatically, both of the
following lines are syntactically valid:

wxVari ant res
wxVari ant res

obj . Get Property("Range", wxVariant("Al1"));
obj . Get Property("Range", "Al");

Note that property can contain dot-separated property names, to save the application
needing to call GetProperty several times using several temporary objects.

wxAutomationObject::Invoke

bool Invoke(const wxString& member, int action, wxVariant& retValue, int noArgs,
wxVariant args[], const wxVariant* ptrArgs[] = 0) const

52

CHAPTER 5

This function is a low-level implementation that allows access to the IDispatch Invoke
function. It is not meant to be called directly by the application, but is used by other
convenience functions.

Parameters

member
The member function or property name.

action
Bitlist: may contain DISPATCH_PROPERTYPUT,
DISPATCH_PROPERTYPUTREF, DISPATCH_METHOD.
retValue
Return value (ignored if there is no return value)
NoArgs

Number of arguments in args or ptrArgs.

args
If non-null, contains an array of variants.

ptrArgs
If non-null, contains an array of constant pointers to variants.

Return value

TRUE if the operation was successful, FALSE otherwise.

Remarks

Two types of argument array are provided, so that when possible pointers are used for

efficiency.

wxAutomationObject::PutProperty

bool PutProperty(const wxString& property, int noArgs, wxVariant args[]) const
bool PutProperty(const wxString& property, ...)

Puts a property value into this object. The first form takes a property name, number of
arguments, and an array of variants. The second form takes a property name and zero
to six constant references to variants. Since the variant class has constructors for the
basic data types, and C++ provides temporary objects automatically, both of the
following lines are syntactically valid:

obj . Put Property("Val ue", wxVariant(23));

53

CHAPTER 5

obj . Put Property("Val ue", 23);

Note that property can contain dot-separated property names, to save the application
needing to call GetProperty several times using several temporary objects.

wxAutomationObject::SetDispatchPtr

void SetDispatchPtr(WXIDISPATCH?* dispatchPtr)

Sets the IDispatch pointer. This function does not check if there is already an IDispatch
pointer.

You may need to cast from IDispatch* to WXIDISPATCH* when calling this function.

wxBitmap

This class encapsulates the concept of a platform-dependent bitmap, either
monochrome or colour.

Derived from

wxGDIObject (p. 477)
wxObiject (p. 750)

Include files
<wx/bitmap.h>
Predefined objects
Objects:
wxNullBitmap

See also

wxBitmap overview (p. 1396),supported bitmap file formats (p. 1397),wxDC::Blit (p.
283),wxlcon (p. 562), wxCursor (p. 184), wxBitmap (p. 54),wxMemoryDC (p. 682)

wxBitmap::wxBitmap

CHAPTER 5

wxBitmap()

Default constructor.

wxBitmap(const wxBitmap& bitmap)

Copy constructor.

wxBitmap(void* data, int type, int width, int height, int depth = -1)

Creates a bitmap from the given data which is interpreted in platform-dependent
manner.

wxBitmap(const char bits[], int width, int height
int depth = 1)

Creates a bitmap from an array of bits.

You should only use this function for monochrome bitmaps (depth 1) in portable
programs: in this case the bits parameter should contain an XBM image.

For other bit depths, the behaviour is platform dependent: under Windows, the data is
passed without any changes to the underlying Cr eat eBi t map() API. Under other
platforms, only monochrome bitmaps may be created using this constructor and
wxImage (p. 569) should be used for creating colour bitmaps from static data.
wxBitmap(int width, int height, int depth = -1)

Creates a new bitmap. A depth of -1 indicates the depth of the current screen or visual.
Some platforms only support 1 for monochrome and -1 for the current colour setting.

wxBitmap(const char** bits)

Creates a bitmap from XPM data.
wxBitmap(const wxString& name, long type)
Loads a bitmap from a file or resource.
Parameters

bits
Specifies an array of pixel values.

width
Specifies the width of the bitmap.

height
Specifies the height of the bitmap.

depth

55

CHAPTER 5

Specifies the depth of the bitmap. If this is omitted, the display depth of the screen
is used.

name

This can refer to a resource name under MS Windows, or a filename under MS
Windows and X. Its meaning is determined by the type parameter.

type
May be one of the following:

wWxBITMAP_TYPE_BMP Load a Windows bitmap file.

wWxBITMAP_TYPE_BMP_RESOURCE Load a Windows bitmap from the
resource database.

WXBITMAP_TYPE_GIF Load a GIF bitmap file.

WXBITMAP_TYPE_XBM Load an X bitmap file.

WXBITMAP_TYPE_XPM Load an XPM bitmap file.
wWxBITMAP_TYPE_RESOURCE Load a Windows resource name.

The validity of these flags depends on the platform and wxWindows configuration.
If all possible wxWindows settings are used, the Windows platform supports BMP
file, BMP resource, XPM data, and XPM. Under wxGTK, the available formats are
BMP file, XPM data, XPM file, and PNG file. Under wxMotif, the available formats
are XBM data, XBM file, XPM data, XPM file.

In addition, wxBitmap can read all formats that wximage (p. 569) can, which
currently include wxBITMAP_TYPE_JPEG, wxBITMAP_TYPE_TIF,
wxBITMAP_TYPE_PNG, wxBITMAP_TYPE_GIF, wxBITMAP_TYPE_PCX, and
wxBITMAP_TYPE_PNM. Of course, you must have wxlmage handlers loaded.

Remarks

The first form constructs a bitmap object with no data; an assignment or another
member function such as Create or LoadFile must be called subsequently.

The second and third forms provide copy constructors. Note that these do not copy the
bitmap data, but instead a pointer to the data, keeping a reference count. They are
therefore very efficient operations.

The fourth form constructs a bitmap from data whose type and value depends on the
value of the type argument.

The fifth form constructs a (usually monochrome) bitmap from an array of pixel values,
under both X and Windows.

The sixth form constructs a new bitmap.

56

CHAPTER 5

The seventh form constructs a bitmap from pixmap (XPM) data, if wxWindows has been
configured to incorporate this feature.

To use this constructor, you must first include an XPM file. For example, assuming that
the file mybi t map. xpmcontains an XPM array of character pointers called mybitmap:

#i ncl ude "nybit map. xpnt

wWxBi t map *bitmap = new wxBi t map(nybi t nap) ;

The eighth form constructs a bitmap from a file or resource. name can refer to a
resource name under MS Windows, or a filename under MS Windows and X.

Under Windows, type defaults to wxBITMAP_TYPE_BMP_RESOURCE. Under X, type
defaults to wxBITMAP_TYPE_XPM.

See also
wxBitmap::LoadFile (p. 61)
wxPython note: Constructors supported by wxPython are:
wxBitmap(name, flag) Loads a bitmap from a file
wxBitmapFromData(data, type, width, height, depth=1) Creates a
bitmap from the given data, which can be of
arbitrary type.
wxNoRefBitmap(name, flag) This one won't own the reference, so
Python won't call the destructor, this is good for
toolbars and such where the parent will

manage the bitmap.

wxEmptyBitmap(width, height, depth = -1) Creates an empty bitmap
with the given specifications

wxBitmap::~wxBitmap

~wxBitmap()

Destroys the wxBitmap object and possibly the underlying bitmap data. Because
reference counting is used, the bitmap may not actually be destroyed at this point - only
when the reference count is zero will the data be deleted.

If the application omits to delete the bitmap explicitly, the bitmap will be destroyed
automatically by wxWindows when the application exits.

57

CHAPTER 5

Do not delete a bitmap that is selected into a memory device context.

wxBitmap::AddHandler

static void AddHandler(wxBitmapHandler* handler)

Adds a handler to the end of the static list of format handlers.

handler
A new bitmap format handler object. There is usually only one instance of a given
handler class in an application session.

See also

wxBitmapHandler (p. 66)

wxBitmap::CleanUpHandlers

static void CleanUpHandlers()
Deletes all bitmap handlers.

This function is called by wxWindows on exit.

wxBitmap::Create

virtual bool Create(int width, int height, int depth = -1)

Creates a fresh bitmap. If the final argument is omitted, the display depth of the screen is
used.

virtual bool Create(void* data, int type, int width, int height, int depth = -1)
Creates a bitmap from the given data, which can be of arbitrary type.
Parameters

width
The width of the bitmap in pixels.

height
The height of the bitmap in pixels.

depth
The depth of the bitmap in pixels. If this is -1, the screen depth is used.

data

58

CHAPTER 5

Data whose type depends on the value of type.

type
A bitmap type identifier - see wxBitmap::wxBitmap (p. 54) for a list of possible
values.

Return value

TRUE if the call succeeded, FALSE otherwise.

Remarks

The first form works on all platforms. The portability of the second form depends on the
type of data.

See also

wxBitmap::wxBitmap (p. 54)

wxBitmap::FindHandler

static wxBitmapHandler* FindHandler(const wxString& name)

Finds the handler with the given name.

static wxBitmapHandler* FindHandler(const wxString& extension, long bitmapType)
Finds the handler associated with the given extension and type.

static wxBitmapHandler* FindHandler(long bitmapType)

Finds the handler associated with the given bitmap type.

name
The handler name.

extension
The file extension, such as "bmp".

bitmapType
The bitmap type, such as wxBITMAP_TYPE_BMP.

Return value
A pointer to the handler if found, NULL otherwise.
See also

wxBitmapHandler (p. 66)

59

CHAPTER 5

wxBitmap::GetDepth

int GetDepth() const

Gets the colour depth of the bitmap. A value of 1 indicates a monochrome bitmap.

wxBitmap::GetHandlers

static wxList& GetHandlers()
Returns the static list of bitmap format handlers.
See also

wxBitmapHandler (p. 66)

wxBitmap::GetHeight

int GetHeight() const

Gets the height of the bitmap in pixels.

wxBitmap::GetPalette

wxPalette* GetPalette() const

Gets the associated palette (if any) which may have been loaded from a file or set for the
bitmap.

See also

wxPalette (p. 765)

wxBitmap::GetMask

wxMask* GetMask() const

Gets the associated mask (if any) which may have been loaded from a file or set for the
bitmap.

See also

wxBitmap::SetMask (p. 64), wxMask (p. 663)

60

CHAPTER 5

wxBitmap::GetWidth

int GetWidth() const
Gets the width of the bitmap in pixels.
See also

wxBitmap::GetHeight (p. 60)

wxBitmap::GetSubBitmap

wxBitmap GetSubBitmap(const wxRect&rect) const

Returns a sub bitmap of the current one as long as the rect belongs entirely to the
bitmap. This function preserves bit depth and mask information.

wxBitmap::InitStandardHandlers

static void InitStandardHandlers()

Adds the standard bitmap format handlers, which, depending on wxWindows
configuration, can be handlers for Windows bitmap, Windows bitmap resource, and
XPM.

This function is called by wxWindows on startup.

See also

wxBitmapHandler (p. 66)

wxBitmap::InsertHandler

static void InsertHandler(wxBitmapHandler* handler)

Adds a handler at the start of the static list of format handlers.

handler
A new bitmap format handler object. There is usually only one instance of a given
handler class in an application session.

See also

wxBitmapHandler (p. 66)

wxBitmap::LoadFile

61

CHAPTER 5

bool LoadFile(const wxString& name, long type)
Loads a bitmap from a file or resource.
Parameters

name

Either a filename or a Windows resource name. The meaning of name is
determined by the type parameter.

type
One of the following values:

wWxBITMAP_TYPE_BMP Load a Windows bitmap file.

wWxBITMAP_TYPE_BMP_RESOURCE Load a Windows bitmap from the
resource database.

WXBITMAP_TYPE_GIF Load a GIF bitmap file.
WXBITMAP_TYPE_XBM Load an X bitmap file.
WXBITMAP_TYPE_XPM Load an XPM bitmap file.
The validity of these flags depends on the platform and wxWindows configuration.
In addition, wxBitmap can read all formats that wxlmage (p. 569) can
(WxBITMAP_TYPE_JPEG, wxBITMAP_TYPE_PNG, wxBITMAP_TYPE_GIF,
WxBITMAP_TYPE_PCX, wxBITMAP_TYPE_PNM). (Of course you must have
wxImage handlers loaded.)
Return value
TRUE if the operation succeeded, FALSE otherwise.
Remarks
A palette may be associated with the bitmap if one exists (especially for colour Windows
bitmaps), and if the code supports it. You can check if one has been created by using
the GetPalette (p. 60) member.

See also

wxBitmap::SaveFile (p. 63)

wxBitmap::Ok

bool Ok() const

62

CHAPTER 5

Returns TRUE if bitmap data is present.

wxBitmap::RemoveHandler

static bool RemoveHandler(const wxString& name)
Finds the handler with the given name, and removes it. The handler is not deleted.

name
The handler name.

Return value
TRUE if the handler was found and removed, FALSE otherwise.
See also

wxBitmapHandler (p. 66)

wxBitmap::SaveFile

bool SaveFile(const wxString& name, int type, wxPalette* palette = NULL)
Saves a bitmap in the named file.
Parameters

name
A filename. The meaning of name is determined by the type parameter.

type
One of the following values:

wWxBITMAP_TYPE_BMP Save a Windows bitmap file.
WXBITMAP_TYPE_GIF Save a GIF bitmap file.

WXBITMAP_TYPE_XBM Save an X bitmap file.

WXBITMAP_TYPE_XPM Save an XPM bitmap file.

The validity of these flags depends on the platform and wxWindows configuration.
In addition, wxBitmap can save all formats that wxlmage (p. 569) can
(WxBITMAP_TYPE_JPEG, wxBITMAP_TYPE_PNG). (Of course you must have

wxIlmage handlers loaded.)

palette

63

CHAPTER 5

An optional palette used for saving the bitmap.
Return value

TRUE if the operation succeeded, FALSE otherwise.

Remarks

Depending on how wxWindows has been configured, not all formats may be available.
See also

wxBitmap::LoadFile (p. 61)

wxBitmap::SetDepth

void SetDepth(int depth)
Sets the depth member (does not affect the bitmap data).
Parameters
depth
Bitmap depth.

wxBitmap::SetHeight

void SetHeight(int height)

Sets the height member (does not affect the bitmap data).
Parameters

height

Bitmap height in pixels.

wxBitmap::SetMask

void SetMask(wxMask* mask)

Sets the mask for this bitmap.

Remarks

The bitmap object owns the mask once this has been called.

See also

CHAPTER 5

wxBitmap::GetMask (p. 60), wxMask (p. 663)

wxBitmap::SetOk

void SetOk(int isOKk)

Sets the validity member (does not affect the bitmap data).

Parameters

isOk
Validity flag.

wxBitmap::SetPalette

void SetPalette(const wxPalette& palette)
Sets the associated palette.
Parameters

palette
The palette to set.

See also

wxPalette (p. 765)

wxBitmap::SetWidth

void SetWidth(int width)

Sets the width member (does not affect the bitmap data).
Parameters

width

Bitmap width in pixels.

wxBitmap::operator =

wxBitmap& operator =(const wxBitmap& bitmap)

Assignment operator. This operator does not copy any data, but instead passes a
pointer to the data in bitmap and increments a reference counter. It is a fast operation.

65

CHAPTER 5

Parameters

bitmap
Bitmap to assign.

Return value

Returns 'this' object.

wxBitmap::operator ==

bool operator ==(const wxBitmapé& bitmap)

Equality operator. This operator tests whether the internal data pointers are equal (a fast
test).

Parameters

bitmap
Bitmap to compare with 'this'

Return value

Returns TRUE if the bitmaps were effectively equal, FALSE otherwise.

wxBitmap::operator =

bool operator I=(const wxBitmap& bitmap)

Inequality operator. This operator tests whether the internal data pointers are unequal (a
fast test).

Parameters

bitmap
Bitmap to compare with 'this'

Return value

Returns TRUE if the bitmaps were unequal, FALSE otherwise.

wxBitmapHandler

Overview (p. 1396)

66

CHAPTER 5

This is the base class for implementing bitmap file loading/saving, and bitmap creation
from data. It is used within wxBitmap and is not normally seen by the application.

If you wish to extend the capabilities of wxBitmap, derive a class from wxBitmapHandler
and add the handler using wxBitmap::AddHandler (p. 58) in your application initialisation.

Derived from
wxObiject (p. 750)
Include files
<wx/bitmap.h>
See also

wxBitmap (p. 54), wxlcon (p. 562), wxCursor (p. 184)

wxBitmapHandler::wxBitmapHandler

wxBitmapHandler()

Default constructor. In your own default constructor, initialise the members m_name,
m_extension and m_type.

wxBitmapHandler::~wxBitmapHandler

~wxBitmapHandler()

Destroys the wxBitmapHandler object.

wxBitmapHandler::Create

virtual bool Create(wxBitmap* bitmap, void* data, int type, int width, int height, int
depth = -1)

Creates a bitmap from the given data, which can be of arbitrary type. The wxBitmap
object bitmap is manipulated by this function.

Parameters

bitmap
The wxBitmap object.

width

67

CHAPTER 5

The width of the bitmap in pixels.

height
The height of the bitmap in pixels.

depth
The depth of the bitmap in pixels. If this is -1, the screen depth is used.

data
Data whose type depends on the value of type.

type
A bitmap type identifier - see wxBitmapHandler::wxBitmapHandler (p. 54) for a list
of possible values.

Return value

TRUE if the call succeeded, FALSE otherwise (the default).

wxBitmapHandler::GetName

wxString GetName() const

Gets the name of this handler.

wxBitmapHandler::GetExtension

wxString GetExtension() const

Gets the file extension associated with this handler.

wxBitmapHandler::GetType

long GetType() const

Gets the bitmap type associated with this handler.

wxBitmapHandler::LoadFile

bool LoadFile(wxBitmap* bitmap, const wxString& name, long type)
Loads a bitmap from a file or resource, putting the resulting data into bitmap.
Parameters

bitmap

68

CHAPTER 5

The bitmap object which is to be affected by this operation.
name

Either a filename or a Windows resource name. The meaning of name is
determined by the type parameter.

type
See wxBitmap::wxBitmap (p. 54) for values this can take.

Return value

TRUE if the operation succeeded, FALSE otherwise.
See also

wxBitmap::LoadFile (p. 61)

wxBitmap::SaveFile (p. 63)
wxBitmapHandler::SaveFile (p. 69)

wxBitmapHandler::SaveFile

bool SaveFile(wxBitmap* bitmap, const wxString& name, int type, wxPalette* palette
= NULL)

Saves a bitmap in the named file.
Parameters

bitmap
The bitmap object which is to be affected by this operation.

name
A filename. The meaning of name is determined by the type parameter.

type
See wxBitmap::wxBitmap (p. 54) for values this can take.

palette
An optional palette used for saving the bitmap.

Return value

TRUE if the operation succeeded, FALSE otherwise.
See also

wxBitmap::LoadFile (p. 61)

wxBitmap::SaveFile (p. 63)
wxBitmapHandler::LoadFile (p. 68)

69

CHAPTER 5

wxBitmapHandler::SetName

void SetName(const wxString& name)
Sets the handler name.

Parameters

name

Handler name.

wxBitmapHandler::SetExtension

void SetExtension(const wxString& extension)
Sets the handler extension.

Parameters

extension

Handler extension.

wxBitmapHandler::SetType

void SetType(long type)
Sets the handler type.
Parameters

name
Handler type.

wxBitmapButton

A bitmap button is a control that contains a bitmap. It may be placed on a dialog box (p.
312) or panel (p. 769), or indeed almost any other window.

Derived from

wxButton (p. 89)
wxControl (p. 177)
wxWindow (p. 1190)
wxEvtHandler (p. 380)

70

CHAPTER 5

wxObiject (p. 750)

Include files

<wx/bmpbuttn.h>

Remarks

A bitmap button can be supplied with a single bitmap, and wxWindows will draw all

button states using this bitmap. If the application needs more control, additional bitmaps

for the selected state, unpressed focused state, and greyed-out state may be supplied.

Window styles

wxBU_AUTODRAW If this is specified, the button will be drawn automatically
using the label bitmap only, providing a 3D-look border. If

this style is not specified, the button will be drawn without
borders and using all provided bitmaps. WIN32 only.

wxBU_LEFT Left-justifies the bitmap label. WIN32 only.

wxBU_TOP Aligns the bitmap label to the top of the button. WIN32
only.

wxBU_RIGHT Right-justifies the bitmap label. WIN32 only.

wxBU_BOTTOM Aligns the bitmap label to the bottom of the button. WIN32
only.

See also window styles overview (p. 1378).

Event handling

EVT_BUTTON(id, func) Process a
wWXEVT_COMMAND_BUTTON_CLICKED
event, when the button is clicked.

See also

wxButton (p. 89)

wxBitmapButton::wxBitmapButton

wxBitmapButton()
Default constructor.
wxBitmapButton(wxWindow* parent, wxWindowID id, const wxBitmap& bitmap,

const wxPoint& pos = wxDefaultPosition, const wxSize& size = wxDefaultSize, long
style = wxBU_AUTODRAW, const wxValidator& validator = wxDefaultValidator, const

71

CHAPTER 5

wxString& name = "button”)
Constructor, creating and showing a button.
Parameters

parent
Parent window. Must not be NULL.

id
Button identifier. A value of -1 indicates a default value.

bitmap
Bitmap to be displayed.

pos
Button position.

size
Button size. If the default size (-1, -1) is specified then the button is sized
appropriately for the bitmap.

style
Window style. See wxBitmapButton (p. 70).

validator
Window validator.

name
Window name.

Remarks

The bitmap parameter is normally the only bitmap you need to provide, and wxWindows
will draw the button correctly in its different states. If you want more control, call any of
the functions wxBitmapButton::SetBitmapSelected (p. 75),
wxBitmapButton::SetBitmapFocus (p. 74), wxBitmapButton::SetBitmapDisabled (p. 74).
Note that the bitmap passed is smaller than the actual button created.

See also

wxBitmapButton::Create (p. 73), wxValidator (p. 1172)

wxBitmapButton::~wxBitmapButton

~wxBitmapButton()

Destructor, destroying the button.

72

CHAPTER 5

wxBitmapButton::Create

bool Create(wxWindow* parent, wxWindowlID id, const wxBitmap& bitmap, const
wxPoint& pos, const wxSize& size = wxDefaultSize, long style = 0, const
wxValidatoré& validator, const wxString& name = "button")

Button creation function for two-step creation. For more details, see
wxBitmapButton::wxBitmapButton (p. 71).

wxBitmapButton::GetBitmapDisabled

wxBitmap& GetBitmapDisabled() const
Returns the bitmap for the disabled state.
Return value

A reference to the disabled state bitmap.
See also

wxBitmapButton::SetBitmapDisabled (p. 74)

wxBitmapButton::GetBitmapFocus

wxBitmap& GetBitmapFocus() const
Returns the bitmap for the focused state.
Return value

A reference to the focused state bitmap.
See also

wxBitmapButton::SetBitmapFocus (p. 74)

wxBitmapButton::GetBitmapLabel

wxBitmap& GetBitmapLabel() const

Returns the label bitmap (the one passed to the constructor).

Return value

A reference to the button's label bitmap.

73

CHAPTER 5

See also

wxBitmapButton::SetBitmapLabel (p. 75)

wxBitmapButton::GetBitmapSelected

wxBitmap& GetBitmapSelected() const
Returns the bitmap for the selected state.
Return value

A reference to the selected state bitmap.
See also

wxBitmapButton::SetBitmapSelected (p. 75)

wxBitmapButton::SetBitmapDisabled

void SetBitmapDisabled(const wxBitmapé& bitmap)
Sets the bitmap for the disabled button appearance.
Parameters

bitmap
The bitmap to set.

See also
wxBitmapButton::GetBitmapDisabled (p. 73), wxBitmapButton::SetBitmapLabel (p. 75),
wxBitmapButton::SetBitmapSelected (p. 75), wxBitmapButton::SetBitmapFocus (p. 74)

wxBitmapButton::SetBitmapFocus

void SetBitmapFocus(const wxBitmapé& bitmap)
Sets the bitmap for the button appearance when it has the keyboard focus.
Parameters

bitmap
The bitmap to set.

See also

74

CHAPTER 5

wxBitmapButton::GetBitmapFocus (p. 73), wxBitmapButton::SetBitmapLabel (p. 75),
wxBitmapButton::SetBitmapSelected (p. 75), wxBitmapButton::SetBitmapDisabled (p.
74)

wxBitmapButton::SetBitmapLabel

void SetBitmapLabel(const wxBitmap& bitmap)
Sets the bitmap label for the button.
Parameters

bitmap
The bitmap label to set.

Remarks

This is the bitmap used for the unselected state, and for all other states if no other
bitmaps are provided.

See also

wxBitmapButton::GetBitmapLabel (p. 73)

wxBitmapButton::SetBitmapSelected

void SetBitmapSelected(const wxBitmap& bitmap)
Sets the bitmap for the selected (depressed) button appearance.
Parameters

bitmap
The bitmap to set.

See also

wxBitmapButton::GetBitmapSelected (p. 74), wxBitmapButton::SetBitmapLabel (p. 75),
wxBitmapButton::SetBitmapFocus (p. 74), wxBitmapButton::SetBitmapDisabled (p. 74)

wxBitmapDataObject

wxBitmapDataObject is a specialization of wxDataObject for bitmap data. It can be used
without change to paste data into the wxClipboard (p. 121) or a wxDropSource (p. 368).

75

CHAPTER 5

A user may wish to derive a new class from this class for providing a bitmap on-demand
in order to minimize memory consumption when offering data in several formats, such as
a bitmap and GIF.

wxPython note: If you wish to create a derived wxBitmapDataObiject class in wxPython
you should derive the class from wxPyBitmapDataObject in order to get Python-aware
capabilities for the various virtual methods.

Virtual functions to override

This class may be used as is, but GetBitmap (p. 76) may be overridden to increase
efficiency.

Derived from

wxDataObjectSimple (p. 202)
wxDataObject (p. 197)

Include files

<wx/dataobj.h>

See also

Clipboard and drag and drop overview (p. 1429), wxDataObject (p. 197),
wxDataObjectSimple (p. 202), wxFileDataObject (p. 409), wxTextDataObject (p. 1088),
wxDataObject (p. 197)

wxBitmapDataObject(const wxBitmap& bitmap = wxNullBitmap)

Constructor, optionally passing a bitmap (otherwise use SetBitmap (p. 76) later).

wxBitmapDataObject::GetBitmap

virtual wxBitmap GetBitmap() const
Returns the bitmap associated with the data object. You may wish to override this

method when offering data on-demand, but this is not required by wxWindows' internals.
Use this method to get data in bitmap form from the wxClipboard (p. 121).

wxBitmapDataObject::SetBitmap

virtual void SetBitmap(const wxBitmap& bitmap)

Sets the bitmap associated with the data object. This method is called when the data
object receives data. Usually there will be no reason to override this function.

76

CHAPTER 5

wxBoolFormValidator

This class validates a boolean value for a form view (p. 832). The associated control
must be a wxCheckBox.

See also

Property validator classes (p. 1462)

wxBoolFormValidator::wxBoolFormValidator

void wxBoolFormValidator(long flags=0)

Constructor.
wxBoolListValidator
This class validates a boolean value for a property list view (p. 839).

See also

Validator classes (p. 1462)

wxBoolListValidator::wxBoolListValidator

void wxBoolListValidator(long flags=0)

Constructor.

wxBoxSizer

The basic idea behind a box sizer is that windows will most often be laid out in rather
simple basic geomerty, typically in a row or a column or several hierachies of either.

As an example, we will construct a dialog that will contain a text field at the top and two
buttons at the bottom. This can be seen as a top-hierarchy column with the text at the

77

CHAPTER 5

top and buttons at the bottom and a low-hierchary row with an OK button to the left and
a Cancel button to the right. In many cases (particulary dialogs under Unix and normal
frames) the main window will be resizable by the user and this change of size will have
to get propagated to its children. In our case, we want the text area to grow with the
dialog, whereas the button shall have a fixed size. In addition, there will be a thin border
around all controls to make the dialog look nice and - to make matter worse - the buttons
shall be centred as the width of the dialog changes.

It is the unique feature of a box sizer, that it can grow in both directions (height and
width) but can distribute its growth in the main direction (horizontal for a row) unevenly
among its children. In our example case, the vertical sizer is supposed to propagate all
its height changes to only the text area, not to the button area. This is determined by the
option parameter when adding a window (or another sizer) to a sizer. It is interpreted as
a weight factor, i.e. it can be zero, indicating that the window may not be resized at all, or
above zero. If several windows have a value above zero, the value is interpreted relative
to the sum of all weight factors of the sizer, so when adding two windows with a value of
1, they will both get resized equally much and each half as much as the sizer owning
them. Then what do we do when a column sizer changes its width? This behaviour is
controlled by flags (the second parameter of the Add() function): Zero or no flag
indicates that the window will preserve it is original size, wxGROW flag (same as
WXEXPAND) forces the window to grow with the sizer, and wxSHAPED flag tells the
window to change it is size proportionally, preserving original aspect ratio. When
WXGROW flag is not used, the item can be aligned within available space.
WXALIGN_LEFT, wxALIGN_TOP, wxALIGN_RIGHT, wxALIGN_BOTTOM,
WXALIGN_CENTER_HORIZONTAL and wxALIGN_CENTER_VERTICAL do what they
say. WXALIGN_CENTRE (same as wxALIGN_CENTER) is defined as
(WXALIGN_CENTER_HORIZONTAL | wxALIGN_CENTER_VERTICAL). Default
alignment is WxALIGN_LEFT | wxALIGN_TOP.

As mentioned above, any window belonging to a sizer may have border, and it can be
specified which of the four sides may have this border, using the wxTOP, wxLEFT,
WXRIGHT and wxBOTTOM constants or wxALL for all directions (and you may also use
WXNORTH, wxWEST etc instead). These flags can be used in combination with the
alignment flags above as the second parameter of the Add() method using the binary or
operator |. The sizer of the border also must be made known, and it is the third
parameter in the Add() method. This means, that the entire behaviour of a sizer and its
children can be controlled by the three parameters of the Add() method.

/1 we want to get a dialog that is stretchabl e because it
/!l has a text ctrl at the top and two buttons at the bottom

M/Di al og: : MyDi al og(wxFranme *parent, wxWndow D id, const wxString
&itle)

wxDi al og(parent, id, title, wxDefaultPosition, wxDefaultSize,
wxDl ALOG _STYLE | wxRESI ZE_BORDER)
{

wxBoxSi zer *topsizer = new wxBoxSi zer (WxVERTI CAL);

// create text ctrl with mniml size 100x60
t opsi zer - >Add(
new wxTextCtrl (this, -1, "My text.", wxDefaultPosition,
wxSi ze(100, 60), wxTE_MULTI LI NE),

78

CHAPTER 5

1, /1 nmake vertically stretchable
WX EXPAND | /1 make horizontally stretchable
WXALL, /1 and make border all around
10); /] set border width to 10

wWxBoxSi zer *button_sizer = new wxBoxSi zer (wWxHORI ZONTAL)
button_si zer - >Add(
new wxButton(this, wxlD OK, "K'),

0, /1 make horizontally unstretchable
WXALL, /1 nmake border all around (inplicit top alignnent)
10); /] set border width to 10

button_si zer - >Add(
new wxButton(this, wxlD CANCEL, "Cancel"),

0, /1 nmake horizontally unstretchable
WXALL, /1 nmake border all around (inplicit top alignnent)
10); /] set border width to 10

t opsi zer - >Add(
button_si zer,
0, /1 nmake vertically unstretchable
WXALI GN_CENTER); // no border and centre horizontally

Set Aut oLayout (TRUE); /1 tell dialog to use sizer

Set Si zer (topsizer); /1 actually set the sizer

topsizer->Fit(this); /1 set size to mninmumsize as
cal cul ated by the sizer

t opsi zer->Set Si zeHints(this); /1 set size hints to honour m ninum
si ze

}

Derived from

wxSizer (p. 929)
wxObiject (p. 750)

wxBoxSizer::wxBoxSizer

wxBoxSizer(int orient)

Constructor for a wxBoxSizer. orient may be either of wxVERTICAL or wxHORIZONTAL
for creating either a column sizer or a row sizer.

wxBoxSizer::RecalcSizes

void RecalcSizes()

Implements the calculation of a box sizer's dimensions and then sets the size of its its
children (calling wxWindow::SetSize (p. 1234) if the child is a window). It is used
internally only and must not be called by the user. Documented for information.

79

CHAPTER 5

wxBoxSizer::CalcMin

wxSize CalcMin()

Implements the calculation of a box sizer's minimal. It is used internally only and must
not be called by the user. Documented for information.

wxBoxSizer::GetOrientation

int GetOrientation()

Returns the orientation of the box sizer, either wxVERTICAL or wxHORIZONTAL.

wxBrush

A brush is a drawing tool for filling in areas. It is used for painting the background of
rectangles, ellipses, etc. It has a colour and a style.

Derived from

wxGDIObject (p. 477)
wxObiject (p. 750)

Include files
<wx/brush.h>
Predefined objects
Objects:
wxNullBrush
Pointers:

WXBLUE_BRUSH
WXGREEN_BRUSH
WXWHITE_BRUSH
WXBLACK_BRUSH
WXGREY_BRUSH
WXMEDIUM_GREY_BRUSH
WXLIGHT_GREY_BRUSH
WXTRANSPARENT BRUSH
WXCYAN_BRUSH
WXRED_BRUSH

80

CHAPTER 5

Remarks

On a monochrome display, wxWindows shows all brushes as white unless the colour is
really black.

Do not initialize objects on the stack before the program commences, since other
required structures may not have been set up yet. Instead, define global pointers to
objects and create them in wxApp::Onlnit (p. 28) or when required.

An application may wish to create brushes with different characteristics dynamically, and
there is the consequent danger that a large number of duplicate brushes will be created.
Therefore an application may wish to get a pointer to a brush by using the global list of
brushes wxTheBrushList, and calling the member function FindOrCreateBrush.

wxBrush uses a reference counting system, so assignments between brushes are very
cheap. You can therefore use actual wxBrush objects instead of pointers without
efficiency problems. Once one wxBrush object changes its data it will create its own
brush data internally so that other brushes, which previously shared the data using the
reference counting, are not affected.

See also

wxBrushList (p. 86), wxDC (p. 282), wxDC::SetBrush (p. 297)

wxBrush::wxBrush

wxBrush()

Default constructor. The brush will be uninitialised, and wxBrush::Ok (p. 83) will return
FALSE.

wxBrush(const wxColour& colour, int style)
Constructs a brush from a colour object and style.
wxBrush(const wxString& colourName, int style)
Constructs a brush from a colour name and style.
wxBrush(const wxBitmapé& stippleBitmap)
Constructs a stippled brush using a bitmap.
wxBrush(const wxBrush& brush)

Copy constructor. This uses reference counting so is a cheap operation.

81

CHAPTER 5

Parameters

colour
Colour object.

colourName
Colour name. The name will be looked up in the colour database.

style
One of:
WXTRANSPARENT Transparent (no fill).
wxSOLID Solid.
wxBDIAGONAL_HATCH Backward diagonal hatch.
wWXCROSSDIAG_HATCH Cross-diagonal hatch.
WXFDIAGONAL_HATCH Forward diagonal hatch.
WXCROSS HATCH Cross hatch.
WXHORIZONTAL_HATCH Horizontal hatch.
WXVERTICAL_HATCH Vertical hatch.

brush

Pointer or reference to a brush to copy.

stippleBitmap
A bitmap to use for stippling.

Remarks
If a stipple brush is created, the brush style will be set to wxSTIPPLE.
See also

wxBrushList (p. 86), wxColour (p. 136), wxColourDatabase (p. 141)

wxBrush::~wxBrush

void ~wxBrush()
Destructor.
Remarks

The destructor may not delete the underlying brush object of the native windowing
system, since wxBrush uses a reference counting system for efficiency.

Although all remaining brushes are deleted when the application exits, the application
should try to clean up all brushes itself. This is because wxWindows cannot know if a
pointer to the brush object is stored in an application data structure, and there is a risk of
double deletion.

82

CHAPTER 5

wxBrush::GetColour

wxColour& GetColour() const
Returns a reference to the brush colour.
See also

wxBrush::SetColour (p. 84)

wxBrush::GetStipple

wxBitmap * GetStipple() const

Gets a pointer to the stipple bitmap. If the brush does not have a wxSTIPPLE style, this

bitmap may be non-NULL but uninitialised (wxBitmap::Ok (p. 62) returns FALSE).
See also

wxBrush::SetStipple (p. 84)

wxBrush::GetStyle

int GetStyle() const

Returns the brush style, one of:

WXTRANSPARENT Transparent (no fill).
wxSOLID Solid.
wxBDIAGONAL_HATCH Backward diagonal hatch.
wWXCROSSDIAG_HATCH Cross-diagonal hatch.
WXFDIAGONAL_HATCH Forward diagonal hatch.
WXCROSS _HATCH Cross hatch.
WXHORIZONTAL_HATCH Horizontal hatch.
WXVERTICAL_HATCH Vertical hatch.
WXSTIPPLE Stippled using a bitmap.
WXSTIPPLE_MASK_OPAQUE Stippled using a bitmap's mask.
See also

wxBrush::SetStyle (p. 85), wxBrush::SetColour (p. 84), wxBrush::SetStipple (p. 84)

wxBrush::0k

83

CHAPTER 5

bool Ok() const
Returns TRUE if the brush is initialised. It will return FALSE if the default constructor has

been used (for example, the brush is a member of a class, or NULL has been assigned
to it).

wxBrush::SetColour

void SetColour(wxColour& colour)

Sets the brush colour using a reference to a colour object.

void SetColour(const wxString& colourName)

Sets the brush colour using a colour name from the colour database.

void SetColour(const unsigned char red, const unsigned char green, const
unsigned char blue)

Sets the brush colour using red, green and blue values.
See also

wxBrush::GetColour (p. 83)

wxBrush::SetStipple

void SetStipple(const wxBitmapé& bitmap)
Sets the stipple bitmap.
Parameters

bitmap
The bitmap to use for stippling.

Remarks

The style will be set to wxSTIPPLE, unless the bitmap has a mask associated to it, in
which case the style will be set to wxSTIPPLE_MASK_OPAQUE.

If the wxSTIPPLE variant is used, the bitmap will be used to fill out the area to be drawn.
If the wxSTIPPLE_MASK_OPAQUE is used, the current text foreground and text
background determine what colours are used for displaying and the bits in the mask
(which is a mono-bitmap actually) determine where to draw what.

Note that under Windows 95, only 8x8 pixel large stipple bitmaps are supported,
Windows 98 and NT as well as GTK support arbitrary bitmaps.

CHAPTER 5

See also

wxBitmap (p. 54)

wxBrush::SetStyle

void SetStyle(int style)

Sets the brush style.

style
One of:
WXTRANSPARENT Transparent (no fill).
wxSOLID Solid.
wxBDIAGONAL_HATCH Backward diagonal hatch.
wWXCROSSDIAG_HATCH Cross-diagonal hatch.
WXFDIAGONAL_HATCH Forward diagonal hatch.
WXCROSS HATCH Cross hatch.
WXHORIZONTAL_HATCH Horizontal hatch.
WXVERTICAL_HATCH Vertical hatch.
WXSTIPPLE Stippled using a bitmap.
WXSTIPPLE_MASK_OPAQUE Stippled using a bitmap's mask.

See also

wxBrush::GetStyle (p. 83)

wxBrush::operator =

wxBrushé& operator =(const wxBrush& brush)

Assignment operator, using reference counting. Returns a reference to 'this'.

wxBrush::operator ==

bool operator ==(const wxBrush& brush)
Equality operator. Two brushes are equal if they contain pointers to the same underlying

brush data. It does not compare each attribute, so two independently-created brushes
using the same parameters will fail the test.

wxBrush::operator !=

85

CHAPTER 5

bool operator !=(const wxBrushé& brush)

Inequality operator. Two brushes are not equal if they contain pointers to different
underlying brush data. It does not compare each attribute.

wxBrushList

A brush list is a list containing all brushes which have been created.
Derived from

wxList (p. 619)
wxObiject (p. 750)

Include files
<wx/gdicmn.h>
Remarks

There is only one instance of this class: wxTheBrushList. Use this object to search for
a previously created brush of the desired type and create it if not already found. In some
windowing systems, the brush may be a scarce resource, so it can pay to reuse old
resources if possible. When an application finishes, all brushes will be deleted and their
resources freed, eliminating the possibility of 'memory leaks'. However, it is best not to
rely on this automatic cleanup because it can lead to double deletion in some
circumstances.

There are two mechanisms in recent versions of wxWindows which make the brush list
less useful than it once was. Under Windows, scarce resources are cleaned up internally
if they are not being used. Also, a referencing counting mechanism applied to all GDI
objects means that some sharing of underlying resources is possible. You don't have to
keep track of pointers, working out when it is safe delete a brush, because the
referencing counting does it for you. For example, you can set a brush in a device
context, and then immediately delete the brush you passed, because the brush is
‘copied'.

So you may find it easier to ignore the brush list, and instead create and copy brushes
as you see fit. If your Windows resource meter suggests your application is using too
many resources, you can resort to using GDI lists to share objects explicitly.

The only compelling use for the brush list is for wxWindows to keep track of brushes in
order to clean them up on exit. It is also kept for backward compatibility with earlier
versions of wxWindows.

See also

86

CHAPTER 5

wxBrush (p. 80)

wxBrushList::wxBrushList

void wxBrushList()

Constructor. The application should not construct its own brush list: use the object
pointer wxTheBrushList.

wxBrushList::AddBrush

void AddBrush(wxBrush *brush)

Used internally by wxWindows to add a brush to the list.

wxBrushList::FindOrCreateBrush

wxBrush * FindOrCreateBrush(const wxColour& colour, int style)

Finds a brush with the specified attributes and returns it, else creates a new brush, adds
it to the brush list, and returns it.

wxBrush * FindOrCreateBrush(const wxString& colourName, int style)

Finds a brush with the specified attributes and returns it, else creates a new brush, adds
it to the brush list, and returns it.

Finds a brush of the given specification, or creates one and adds it to the list.
Parameters

colour
Colour object.

colourName
Colour name, which should be in the colour database.

style
Brush style. See wxBrush::SetStyle (p. 85) for a list of styles.

wxBrushList::RemoveBrush

void RemoveBrush(wxBrush *brush)

87

CHAPTER 5

Used by wxWindows to remove a brush from the list.

wxBusyCursor

This class makes it easy to tell your user that the program is temporarily busy. Just
create a wxBusyCursor object on the stack, and within the current scope, the hourglass
will be shown.

For example:

wxBusyCur sor wait;

for (int i =0; i < 100000; i++)
DoACal cul ati on();

It works by calling wxBeginBusyCursor (p. 1274) in the constructor, and
wxEndBusyCursor (p. 1277) in the destructor.

Derived from
None
Include files
<wx/utils.h>
See also

wxBeginBusyCursor (p. 1274), wxEndBusyCursor (p. 1277), wxWindowDisabler (p.
1240)

wxBusyCursor::wxBusyCursor

wxBusyCursor(wxCursor* cursor = wxHOURGLASS_CURSOR)

Constructs a busy cursor object, calling wxBeginBusyCursor (p. 1274).

wxBusyCursor::~wxBusyCursor

~wxBusyCursor()

Destroys the busy cursor object, calling wxEndBusyCursor (p. 1277).

88

CHAPTER 5

wxBusylnfo

This class makes it easy to tell your user that the program is temporarily busy. Just
create a wxBusylInfo object on the stack, and within the current scope, a message
window will be shown.

For example:

wxBusyl nfo wait("Pl ease wait, working...");

for (int i = 0; i < 100000; i++)
DoACal cul ation();

It works by creating a window in the constructor, and deleting it in the destructor.
Derived from

None

Include files

<wx/busyinfo.h>

wxBusyInfo::wxBusylnfo

wxBusylInfo(const wxString& msg)

Constructs a busy info object, displays msg.

wxButton

A button is a control that contains a text string, and is one of the commonest elements of
a GUL. It may be placed on a dialog box (p. 312) or panel (p. 769), or indeed almost any
other window.

Derived from
wxControl (p. 177)
wxWindow (p. 1190)
wxEvtHandler (p. 380)
wxObiject (p. 750)

Include files

89

CHAPTER 5

<wx/button.h>

Window styles

wxBU_LEFT Left-justifies the label. WIN32 only.

wxBU_TOP Aligns the label to the top of the button. WIN32 only.
wxBU_RIGHT Right-justifies the bitmap label. WIN32 only.
wxBU_BOTTOM Aligns the label to the bottom of the button. WIN32 only.

See also window styles overview (p. 1378).

Event handling

EVT_BUTTON(id, func) Process a
wWXEVT_COMMAND_BUTTON_CLICKED
event, when the button is clicked.

See also

wxBitmapButton (p. 70)

wxButton::wxButton

wxButton()

Default constructor.

wxButton(wxWindow* parent, wxWindowID id, const wxString& label, const
wxPoint& pos, const wxSize& size = wxDefaultSize, long style = 0, const
wxValidatoré& validator, const wxString& name = "button")

Constructor, creating and showing a button.

Parameters

parent
Parent window. Must not be NULL.

id
Button identifier. A value of -1 indicates a default value.

label
Text to be displayed on the button.

pos

90

CHAPTER 5

Button position.

size
Button size. If the default size (-1, -1) is specified then the button is sized
appropriately for the text.

style
Window style. See wxButton (p. 89).

validator
Window validator.

name
Window name.

See also

wxButton::Create (p. 91), wxValidator (p. 1172)

wxButton::~wxButton

~wxButton()

Destructor, destroying the button.

wxButton::Create

bool Create(wxWindow* parent, wxWindowID id, const wxString& label, const
wxPoint& pos, const wxSize& size = wxDefaultSize, long style = 0, const
wxValidatoré& validator, const wxString& name = "button")

Button creation function for two-step creation. For more details, see wxButton::wxButton
(p. 90).

wxButton::GetLabel

wxString GetLabel() const

Returns the string label for the button.
Return value

The button's label.

See also

wxButton::SetLabel (p. 92)

91

CHAPTER 5

wxButton::GetDefaultSize

wxSize GetDefaultSize()

Returns the default size for the buttons. It is advised to make all the dialog buttons of the
same size and this function allows to retrieve the (platform and current font dependent
size) which should be the best suited for this.

wxButton::SetDefault

void SetDefault()

This sets the button to be the default item for the panel or dialog box.

Remarks

Under Windows, only dialog box buttons respond to this function. As normal under
Windows and Motif, pressing return causes the default button to be depressed when the
return key is pressed. See also wxWindow::SetFocus (p. 1230) which sets the keyboard
focus for windows and text panel items, and wxPanel::SetDefaultltem (p. 771).

Note that under Maoitif, calling this function immediately after creation of a button and
before the creation of other buttons will cause misalignment of the row of buttons, since
default buttons are larger. To get around this, call SetDefault after you have created a
row of buttons: wxWindows will then set the size of all buttons currently on the panel to
the same size.

wxButton::SetLabel

void SetLabel(const wxString& label)
Sets the string label for the button.
Parameters

label
The label to set.

See also

wxButton::GetLabel (p. 91)

wxBufferedinputStream

92

CHAPTER 5

This stream acts as a cache. It caches the bytes read from the specified input stream
(See wxFilterlnputStream (p. 435)). It uses wxStreamBuffer and sets the default in-buffer
size to 1024 bytes. This class may not be used without some other stream to read the
data from (such as a file stream or a memory stream).

Derived from

wxFilterinputStream (p. 435)

Include files

<wx/stream.h>

See also

wxStreamBuffer (p. 1005), wxInputStream (p. 595),wxBufferedOutputStream (p. 93)

wxBufferedOutputStream

This stream acts as a cache. It caches the bytes to be written to the specified output
stream (See wxFilterOutputStream (p. 435)). The data is only written when the cache is
full, when the buffered stream is destroyed or when calling SeekO().

This class may not be used without some other stream to write the data to (such as a file
stream or a memory stream).

Derived from
wxFilterOutputStream (p. 435)
Include files

<wx/stream.h>

See also

wxStreamBuffer (p. 1005), wxOutputStream (p. 755)

wxBufferedOutputStream::wxBufferedOutputStream

wxBufferedOutputStream(const wxOutputStream& parent)

Creates a buffered stream using a buffer of a default size of 1024 bytes for cashing the

93

CHAPTER 5

stream parent.

wxBufferedOutputStream::~wxBufferedOutputStream

~wxBufferedOutputStream()

Destructor. Calls Sync() and destroys the internal buffer.

wxBufferedOutputStream::SeekO

off_t SeekO(off_t pos, wxSeekMode mode)

Calls Sync() and changes the stream position.

wxBufferedOutputStream::Sync

void Sync()

Flushes the buffer and calls Sync() on the parent stream.

wxCalculateLayoutEvent

This event is sent by wxLayoutAlgorithm (p. 614) to calculate the amount of the
remaining client area that the window should occupy.

Derived from

wxEvent (p. 377)
wxObiject (p. 750)

Include files

<wx/laywin.h>

Event table macros

EVT_CALCULATE_LAYOUT(func) Process a wxEVT_CALCULATE_LAYOUT
event, which asks the window to take a 'bite’
out of a rectangle provided by the algorithm.

See also

wxQueryLayoutinfoEvent (p. 860), wxSashLayoutWindow (p. 898), wxLayoutAlgorithm

94

CHAPTER 5

(p. 614).

wxCalculateLayoutEvent::wxCalculateLayoutEvent

wxCalculateLayoutEvent(wxWindowlID id = 0)

Constructor.

wxCalculateLayoutEvent::GetFlags

int GetFlags() const

Returns the flags associated with this event. Not currently used.

wxCalculateLayoutEvent::GetRect

wxRect GetRect() const

Before the event handler is entered, returns the remaining parent client area that the
window could occupy. When the event handler returns, this should contain the remaining
parent client rectangle, after the event handler has subtracted the area that its window

occupies.

wxCalculateLayoutEvent::SetFlags

void SetFlags(int flags)

Sets the flags associated with this event. Not currently used.

wxCalculateLayoutEvent::SetRect

void SetRect(const wxRect& rect)

Call this to specify the new remaining parent client area, after the space occupied by the
window has been subtracted.

wxCalendarCtrl

The calendar control allows the user to pick a date interactively. For this, it displays a

95

CHAPTER 5

window containing several parts: the control to pick the month and the year at the top
(either or both of them may be disabled) and a month area below them which shows all
the days in the month. The user can move the current selection using the keyboard and
select the date (generating EVT_CALENDAR event) by pressing <Ret ur n> or double
clicking it.

It has advanced possibilities for the customization of its display. All global settings (such
as colours and fonts used) can, of course, be changed. But also, the display style for
each day in the month can be set independently using wxCalendarDateAttr (p. 101)
class.

An item without custom attributes is drawn with the default colours and font and without
border, but setting custom attributes with SetAttr (p. 101) allows to modify its
appearance. Just create a custom attribute object and set it for the day you want to be
displayed specially (note that the control will take ownership of the pointer, i.e. it will
delete it itself). A day may be marked as being a holiday, even if it is not reckognized as
oen by wxDateTime (p. 1346) using SetHoliday (p. 103) method.

As the attributes are specified for each day, they may change when the month is

changed, so you will often want to update them in EVT_CALENDAR _MONTH event

handler.

Derived from

wxControl (p. 177)

wxWindow (p. 1190)

wxEvtHandler (p. 380)

wxObiject (p. 750)

Include files

<wx/calctrl.h>

Window styles

WXCAL_SUNDAY_FIRST Show Sunday as the first day in the week

WXCAL_MONDAY_FIRST Show Monday as the first day in the week

wWXxCAL_SHOW_HOLIDAYS Highlight holidays in the calendar

wWXxCAL_NO_YEAR_CHANGE Disable the year changing

WXCAL_NO_MONTH_CHANGE Disable the month (and, implicitly, the year)
changing

The default calendar style is wx CAL_ SHOW HOLI DAYS.

Event table macros

96

CHAPTER 5

To process input from a calendar control, use these event handler macros to direct input
to member functions that take a wxCalendarEvent (p. 105) argument.

EVT_CALENDAR(id, func) A day was double clickedi n the calendar.

EVT_CALENDAR_SEL_CHANGED(id, func) The selected date changed.

EVT_CALENDAR_DAY(id, func) The selected day changed.

EVT_CALENDAR_MONTH(id, func) The selected month changed.

EVT_CALENDAR_YEAR(id, func) The selected year changed.

EVT_CALENDAR_WEEKDAY_CLICKED(id, func) User clicked on the week day
header

Note that changing the selected date will result in either of EVT_CALENDAR_DAY, MONTH

or YEAR events and EVT_CALENDAR_SEL_CHANGED one.

Constants

The following are the possible return values for HitTest (p. 101) method:

enum wxCal endar H t Test Resul t

{

WXCAL_HI TTEST_NOMERE, /1 outside of anything
wxCAL_H TTEST HEADER, /1 on the header (weekdays)
wWxXCAL_HI TTEST_DAY /1 on a day in the cal endar
i
See also

Calendar sample (p. 1327)
wxCalendarDateAttr (p. 101)
wxCalendarEvent (p. 105)

wxCalendarCtrl::wxCalendarCtrl

wxCalendarCtrl()

Default constructor, use Create (p. 98) after it.

wxCalendarCtrl::wxCalendarCtrl

97

CHAPTER 5

wxCalendarCtrl(wxWindow* parent, wxWindowlID id, const wxDateTime& date =
wxDefaultDateTime, const wxPoint& pos = wxDefaultPosition, const wxSize& size =
wxDefaultSize, long style = wxCAL_SHOW_HOLIDAYS, const wxString& name =
wxCalendarNameStr)

Does the same as Create (p. 98) method.

wxCalendarCtrl::Create

bool Create(wxWindow* parent, wxWindowID id, const wxDateTime& date =
wxDefaultDateTime, const wxPoint& pos = wxDefaultPosition, const wxSize& size =
wxDefaultSize, long style = wxCAL_SHOW_HOLIDAYS, const wxString& name =
wxCalendarNameStr)

Creates the control. See wxWindow (p. 1191) for the meaning of the parameters and the
control overview for the possible styles.

wxCalendarCtrl::~wxCalendarCtrl

~wxCalendarCtrl()

Destroys the control.

wxCalendarCtrl::SetDate

void SetDate(const wxDateTime& date)

Sets the current date.

wxCalendarCtrl::GetDate

const wxDateTime& GetDate() const

Gets the currently selected date.

wxCalendarCtrl::EnableYearChange

void EnableYearChange(bool enable = TRUE)

This function should be used instead of changing wxCAL_NO_YEAR CHANGESstyle bit
directly. It allows or disallows the user to chaneg the year interactively.

wxCalendarCtrl::EnableMonthChange

98

CHAPTER 5

void EnableMonthChange(bool enable = TRUE)
This function should be used instead of changing wx CAL_NO_MONTH_CHANGCE style bit.

It allows or disallows the user to change the month interactively. Note that if the month
can not be changed, the year can not be changed neither.

wxCalendarCtrl::EnableHolidayDisplay

void EnableHolidayDisplay(bool display = TRUE)

This function should be used instead of changing wx CAL_ SHOW HOLI DAYSstyle bit
directly. It enables or disables the special highlighting of the holidays.

wxCalendarCtrl::SetHeaderColours

void SetHeaderColours(const wxColour& colFg, const wxColour& colBg)

Set the colours used for painting the weekdays at the top of the control.

wxCalendarCtrl::GetHeaderColourFg

const wxColour& GetHeaderColourFg() const
Gets the foreground colour of the header part of the calendar window.
See also

SetHeaderColours (p. 99)

wxCalendarCtrl::GetHeaderColourBg

const wxColour& GetHeaderColourBg() const
Gets the background colour of the header part of the calendar window.
See also

SetHeaderColours (p. 99)

wxCalendarCtrl::SetHighlightColours

void SetHighlightColours(const wxColouré& colFg, const wxColour& colBg)

Set the colours to be used for highlighting the currently selected date.

99

CHAPTER 5

wxCalendarCtrl::GetHighlightColourFg

const wxColour& GetHighlightColourFg() const
Gets the foreground highlight colour.
See also

SetHighlightColours (p. 99)

wxCalendarCtrl::GetHighlightColourBg

const wxColour& GetHighlightColourBg() const
Gets the background highlight colour.
See also

SetHighlightColours (p. 99)

wxCalendarCtrl::SetHolidayColours

void SetHolidayColours(const wxColour& colFg, const wxColour& colBg)

Sets the colours to be used for the holidays highlighting (only used if the window style

includes wx CAL_ SHOW HOLI DAYS flag).

wxCalendarCtrl::GetHolidayColourFg

const wxColour& GetHolidayColourFg() const

Return the foregound colour currently used for holiday highlighting.

See also

SetHolidayColours (p. 100)

wxCalendarCtrl::GetHolidayColourBg

const wxColouré& GetHolidayColourBg() const

Return the background colour currently used for holiday highlighting.

See also

100

CHAPTER 5

SetHolidayColours (p. 100)

wxCalendarCtrl::GetAttr

wxCalendarDateAttr * GetAttr(size_t day) const
Returns the attribute for the given date (should be in the range 1...31).

The returned pointer may be NULL.

wxCalendarCtrl::SetAttr

void SetAttr(size_t day, wxCalendarDateAttr* attr)
Associates the attribute with the specified date (in the range 1...31).

If the pointer is NULL, the items attribute is cleared.

wxCalendarCtrl::SetHoliday

void SetHoliday(size_t day)

Marks the specified day as being a holiday in the current month.

wxCalendarCtrl::ResetAttr

void ResetAttr(size_t day)

Clears any attributes associated with the given day (in the rangel...31).

wxCalendarCtrl::HitTest

wxCalendarHitTestResult HitTest(const wxPoint& pos, wxDateTime* date = NULL,
wxDateTime::WeekDay* wd = NULL)

Returns one of wcCAL_HI TTEST_XXX constants (p. 95) and fills either date or wd
pointer with the corresponding value depending on the hit test code.

wxCalendarDateAttr

101

CHAPTER 5

wxCalendarDateAttr is a custom attributes for a calendar date. The objects of this class
are used with wxCalendarCitrl (p. 95).

Derived from
No base class
Constants

Here are the possible kinds of borders which may be used to decorate a date:

enum wxCal endar Dat eBor der

wx CAL_BORDER_NONE, /1 no border (default)
wx CAL_ BORDER_SQUARE, /1 a rectangul ar border
wx CAL_BORDER_ROUND /1 a round border

See also

wxCalendarCtrl (p. 95)

wxCalendarDateAttr::wxCalendarDateAttr

wxCalendarDateAttr()

wxCalendarDateAttr(const wxColour& colText, const wxColour& colBack =
wxNullColour, const wxColouré& colBorder = wxNullColour, const wxFont& font =
wxNullFont, wxCalendarDateBorder border = wxCAL_BORDER_NONE)

wxCalendarDateAttr(wxCalendarDateBorder border, const wxColour& colBorder =
wxNullColour)

The constructors.

wxCalendarDateAttr::SetTextColour

void SetTextColour(const wxColour& colText)

Sets the text (foreground) colour to use.

wxCalendarDateAttr::SetBackgroundColour

102

CHAPTER 5

void SetBackgroundColour(const wxColour& colBack)

Sets the text background colour to use.

wxCalendarDateAttr::SetBorderColour

void SetBorderColour(const wxColouré& col)

Sets the border colour to use.

wxCalendarDateAttr::SetFont

void SetFont(const wxFont& font)

Sets the font to use.

wxCalendarDateAttr::SetBorder

void SetBorder(wxCalendarDateBorder border)

Sets the border kind (p. 101)

wxCalendarDateAttr::SetHoliday

void SetHoliday(bool holiday)

Display the date with this attribute as a holiday.

wxCalendarDateAttr::HasTextColour

bool HasTextColour() const

Returns TRUE if this item has a non default text foreground colour.

wxCalendarDateAttr::HasBackgroundColour

bool HasBackgroundColour() const

Returns TRUE if this attribute specifies a non default text background colour.

wxCalendarDateAttr::HasBorderColour

103

CHAPTER 5

bool HasBorderColour() const

Returns TRUE if this attribute specifies a non default border colour.

wxCalendarDateAttr::HasFont

bool HasFont() const

Returns TRUE if this attribute specifies a non default font.

wxCalendarDateAttr::HasBorder

bool HasBorder() const

Returns TRUE if this attribute specifies a non default (i.e. any) border.

wxCalendarDateAttr::IsHoliday

bool IsHoliday() const

Returns TRUE if this attribute specifies that this item should be displayed as a holiday.

wxCalendarDateAttr::GetTextColour

const wxColour& GetTextColour() const

Returns the text colour to use for the item with this attribute.

wxCalendarDateAttr::GetBackgroundColour

const wxColour& GetBackgroundColour() const

Returns the background colour to use for the item with this attribute.

wxCalendarDateAttr::GetBorderColour

const wxColour& GetBorderColour() const

Returns the border colour to use for the item with this attribute.

wxCalendarDateAttr::GetFont

104

CHAPTER 5

const wxFont& GetFont() const

Returns the font to use for the item with this attribute.

wxCalendarDateAttr::GetBorder

wxCalendarDateBorder GetBorder() const

Returns the border (p. 101) to use for the item with this attribute.

wxCalendarEvent

The wxCalendarEvent class is used together with wxCalendarCtrl (p. 95).

See also

wxCalendarCtrl (p. 95)

wxCalendarEvent::GetDate

wxcalendareventgetdate
const wxDateTime& GetDate() const

Returns the date. This function may be called for all event types except
EVT_CALENDAR_WEEKDAY_CLI CKED one for which it doesn't make sense.

wxCalendarEvent::GetWeekDay

wxcalendareventgetweekday

wxDateTime::WeekDay GetWeekDay() const

Returns the week day on which the user clicked in EVT_CALENDAR_WEEKDAY_CL| CKED
handler. It doesn't make sense to call this function in other handlers.

wxCaret

105

CHAPTER 5

A caret is a blinking cursor showing the position where the typed text will appear. The
text controls usually have a caret but wxCaret class also allows to use a caret in other
windows.

Currently, the caret appears as a rectangle of the given size. In the future, it will be
possible to specify a bitmap to be used for the caret shape.

A caret is always associated with a window and the current caret can be retrieved using
wxWindow::GetCaret (p. 1200). The same caret can't be reused in two different
windows.

Derived from

No base class

Include files

<wx/caret.h>

Data structures

wxCaret::wxCaret

wxCaret()

Default constructor: you must use one of Create() functions later.
wxCaret(wxWindow* window, int width, int height)

wxCaret(wxWindowBase* window, const wxSize& size)

Create the caret of given (in pixels) width and height and associates it with the given

window.

wxCaret::Create

bool Create(wxWindowBase* window, int width, int height)
bool Create(wxWindowBase* window, const wxSize& size)
Create the caret of given (in pixels) width and height and associates it with the given

window (same as constructor).

wxCaret::GetBlinkTime

106

CHAPTER 5

static int GetBlinkTime()

Returns the blink time which is measured in milliseconds and is the time elapsed
between 2 inversions of the caret (blink time of the caret is the same for all carets, so

this functions is static).

wxCaret::GetPosition

void GetPosition(int* x, int* y) const
wxPoint GetPosition() const

Get the caret position (in pixels).

wxCaret::GetSize

void GetSize(int* width, int* height) const
wxSize GetSize() const

Get the caret size.

wxCaret::GetWindow

wxWindow* GetWindow() const

Get the window the caret is associated with.

wxCaret::Hide

void Hide()

Same as wxCaret::Show(FALSE) (p. 108).

wxCaret::IsOk

bool IsOk() const

Returns TRUE if the caret was created successfully.

wxCaret::IsVisible

bool IsVisible() const

107

CHAPTER 5

Returns TRUE if the caret is visible and FALSE if it is permanently hidden (if it is is
blinking and not shown currently but will be after the next blink, this method still returns
TRUE).

wxCaret::Move

void Move(int x, int y)
void Move(const wxPoint& pt)

Move the caret to given position (in logical coordinates).

wxCaret::SetBlinkTime

static void SetBlinkTime(int milliseconds)
Sets the blink time for all the carets.
Remarks

Under Windows, this function will change the blink time for all carets permanently (until
the next time it is called), even for the carets in other applications.

See also

GetBlinkTime (p. 106)

wxCaret::SetSize

void SetSize(int width, int height)
void SetSize(const wxSize& size)

Changes the size of the caret.

wxCaret::Show

void Show(bool show = TRUE)

Shows or hides the caret. Notice that if the caret was hidden N times, it must be shown
N times as well to reappear on the screen.

wxCheckBox

108

CHAPTER 5

A checkbox is a labelled box which is either on (checkmark is visible) or off (no
checkmark).

Derived from

wxControl (p. 177)

wxWindow (p. 1190)

wxEvtHandler (p. 380)

wxObiject (p. 750)

Include files

<wx/checkbox.h>

Window styles

There are no special styles for wxCheckBox.

See also window styles overview (p. 1378).

Event handling

EVT_CHECKBOX(id, func) Process a
WXEVT_COMMAND_CHECKBOX_CLICKED
event, when the checkbox is clicked.

See also

wxRadioButton (p. 869), wxCommandEvent (p. 153)

wxCheckBox::wxCheckBox

wxCheckBox()

Default constructor.

wxCheckBox(wxWindow* parent, wxWindowID id, const wxString& label, const
wxPoint& pos = wxDefaultPosition, const wxSize& size = wxDefaultSize, long style =
0, const wxValidator& val, const wxString& name = "checkBox")

Constructor, creating and showing a checkbox.

Parameters

parent
Parent window. Must not be NULL.

109

CHAPTER 5

id
Checkbox identifier. A value of -1 indicates a default value.
label
Text to be displayed next to the checkbox.
pos
Checkbox position. If the position (-1, -1) is specified then a default position is
chosen.
size
Checkbox size. If the default size (-1, -1) is specified then a default size is chosen.
style
Window style. See wxCheckBox (p. 108).
validator
Window validator.
name
Window name.
See also

wxCheckBox::Create (p. 110), wxValidator (p. 1172)

wxCheckBox::~wxCheckBox

~wxCheckBox()

Destructor, destroying the checkbox.

wxCheckBox::Create

bool Create(wxWindow* parent, wxWindowID id, const wxString& label, const
wxPoint& pos = wxDefaultPosition, const wxSize& size = wxDefaultSize, long style =
0, const wxValidator& val, const wxString& name = "checkBox")

Creates the checkbox for two-step construction. See wxCheckBox::wxCheckBox (p.
109) for details.

wxCheckBox::GetValue

bool GetValue() const

Gets the state of the checkbox.

110

CHAPTER 5

Return value

Returns TRUE if it is checked, FALSE otherwise.

wxCheckBox::SetValue

void SetValue(const bool state)

Sets the checkbox to the given state. This does not cause a
WXEVT_COMMAND_CHECKBOX_CLICKED event to get emitted.

Parameters

state
If TRUE, the check is on, otherwise it is off.

wxCheckListBox

A checklistbox is like a listbox, but allows items to be checked or unchecked.

This class is currently implemented under Windows and GTK. When using this class
under Windows wxWindows must be compiled with USE_OWNER_DRAWN set to 1.

Only the new functions for this class are documented; see also wxListBox (p. 625).
Derived from
wxListBox (p. 625)
wxControl (p. 177)
wxWindow (p. 1190)
wxEvtHandler (p. 380)
wxObiject (p. 750)
Include files
<wx/checklst.h>
Window styles

See wxListBox (p. 625).
Event handling

EVT_CHECKLISTBOX(id, func) Process a
WXEVT_COMMAND_CHECKLISTBOX_TOGG

111

CHAPTER 5

LE event, when an item in the check list box is
checked or unchecked.

See also

wxListBox (p. 625), wxChoice (p. 113), wxComboBox (p. 144), wxListCtrl (p. 634),
wxCommandEvent (p. 153)

wxCheckListBox::wxCheckListBox

wxCheckListBox()

Default constructor.

wxCheckListBox(wxWindow* parent, wxWindowlID id, const wxPoint& pos =
wxDefaultPosition, const wxSize& size = wxDefaultSize, int n, const wxString
choices[] = NULL, long style = 0, const wxValidatoré& validator = wxDefaultValidator,
const wxString& name = "listBox")

Constructor, creating and showing a list box.

Parameters

parent
Parent window. Must not be NULL.

id
Window identifier. A value of -1 indicates a default value.
pos
Window position.
size
Window size. If the default size (-1, -1) is specified then the window is sized
appropriately.
n
Number of strings with which to initialise the control.
choices
An array of strings with which to initialise the control.
style
Window style. See wxCheckListBox (p. 111).
validator

Window validator.

112

CHAPTER 5

name
Window name.

wxPython note: The wxCheckListBox constructor in wxPython reduces the nand
choi ces arguments are to a single argument, which is a list of strings.

wxCheckListBox::~wxCheckListBox

void ~wxCheckListBox()

Destructor, destroying the list box.

wxCheckListBox::Check

void Check(int item, bool check = TRUE)
Checks the given item.
Parameters

item
Index of item to check.

check
TRUE if the item is to be checked, FALSE otherwise.

wxCheckListBox::IsChecked

bool IsChecked(int item) const
Returns TRUE if the given item is checked, FALSE otherwise.
Parameters

item
Index of item whose check status is to be returned.

wxChoice

A choice item is used to select one of a list of strings. Unlike a listbox, only the selection
is visible until the user pulls down the menu of choices.

Derived from

113

CHAPTER 5

wxControl (p. 177)

wxWindow (p. 1190)

wxEvtHandler (p. 380)

wxObiject (p. 750)

Include files

<wx/choice.h>

Window styles

There are no special styles for wxChoice.

See also window styles overview (p. 1378).

Event handling

EVT_CHOICE(id, func) Process a
wxEVT_COMMAND_CHOICE_SELECTED
event, when an item on the list is selected.

See also

wxListBox (p. 625), wxComboBox (p. 144), wxCommandEvent (p. 153)

wxChoice::wxChoice

wxChoice()

Default constructor.

wxChoice(wxWindow *parent, wxWindowlID id, const wxPoint& pos, const wxSize&
size, int n, const wxString choices]], long style = 0, const wxValidator& validator =
wxDefaultValidator, const wxString& name = "choice")

Constructor, creating and showing a choice.

Parameters

parent
Parent window. Must not be NULL.

id
Window identifier. A value of -1 indicates a default value.

pos

114

CHAPTER 5

Window position.
size
Window size. If the default size (-1, -1) is specified then the choice is sized
appropriately.
Number of strings with which to initialise the choice control.

choices
An array of strings with which to initialise the choice control.

style
Window style. See wxChoice (p. 113).

validator
Window validator.

name
Window name.

See also
wxChoice::Create (p. 116), wxValidator (p. 1172)
wxPython note: The wxChoice constructor in wxPython reduces the nand choi ces

arguments are to a single argument, which is a list of strings.

wxChoice::~wxChoice

~wxChoice()

Destructor, destroying the choice item.

wxChoice::Append

void Append(const wxString& item)

Adds the item to the end of the choice control.

void Append(const wxString& item, void* clientData)

Adds the item to the end of the combobox, associating the given data with the item.
Parameters

item
String to add.

115

CHAPTER 5

clientData

Client data to associate with the item.

wxChoice::Clear

void Clear()

Clears the strings from the choice item.

wxChoice::Create

bool Create(wxWindow *parent, wxWindowID id, const wxPoint& pos, const
wxSize& size, int n, const wxString choices[], long style = 0, const wxString& name

= "choice")

Creates the choice for two-step construction. See wxChoice::wxChoice (p. 114).

wxChoice::FindString

int FindString(const wxString& string) const

Finds a choice matching the given string.
Parameters

string
String to find.

Return value

Returns the position if found, or -1 if not found.

wxChoice::GetColumns

int GetColumns() const

Gets the number of columns in this choice item.

Remarks

This is implemented for Motif only.

wxChoice::GetClientData

116

CHAPTER 5

void* GetClientData(int n) const
Returns a pointer to the client data associated with the given item (if any).
Parameters

n
An item, starting from zero.

Return value

A pointer to the client data, or NULL if the item was not found.

wxChoice::GetSelection

int GetSelection() const

Gets the id (position) of the selected string, or -1 if there is no selection.

wxChoice::GetString

wxString GetString(int n) const
Returns the string at the given position.
Parameters

n
The zero-based position.

Return value

The string at the given position, or the empty string if n is invalid.

wxChoice::GetStringSelection

wxString GetStringSelection() const

Gets the selected string, or the empty string if no string is selected.

wxChoice::Number

int Number() const

Returns the number of strings in the choice control.

117

CHAPTER 5

wxChoice::SetClientData

void SetClientData(int n, void* data)
Associates the given client data pointer with the given item.
Parameters

n
The zero-based item.

data
The client data.

wxChoice::SetColumns

void SetColumns(intn = 1)
Sets the number of columns in this choice item.

Parameters

Number of columns.
Remarks

This is implemented for Motif only.

wxChoice::SetSelection

void SetSelection(int n)

Sets the choice by passing the desired string position. This does not cause a
WXEVT_COMMAND_CHOICE_SELECTED event to get emitted.

Parameters

The string position to select, starting from zero.
See also

wxChoice::SetStringSelection (p. 118)

wxChoice::SetStringSelection

118

CHAPTER 5

void SetStringSelection(const wxString& string)

Sets the choice by passing the desired string. This does not cause a
WXEVT_COMMAND_CHOICE_SELECTED event to get emitted.

Parameters

string
The string to select.

See also

wxChoice::SetSelection (p. 118)

wxClassinfo

This class stores meta-information about classes. Instances of this class are not
generally defined directly by an application, but indirectly through use of macros such as
DECLARE_DYNAMIC_CLASS and IMPLEMENT_DYNAMIC_CLASS.

Derived from

No parent class.

Include files

<wx/object.h>

See also

Overview (p. 1337), wxObject (p. 750)

wxClassInfo::wxClassInfo

wxClassInfo(char* className, char* baseClassl, char* baseClass2, int size,
wxObjectConstructorFn fn)

Constructs a wxClassInfo object. The supplied macros implicitly construct objects of this
class, so there is no need to create such objects explicitly in an application.

wxClassInfo::CreateObject

119

CHAPTER 5

wxObject* CreateObiject()

Creates an object of the appropriate kind. Returns NULL if the class has not been
declared dynamically creatable (typically, it is an abstract class).

wxClassinfo::FindClass

static wxClasslInfo * FindClass(char* name)

Finds the wxClassInfo object for a class of the given string name.

wxClassInfo::GetBaseClassNamel

char* GetBaseClassNamel() const

Returns the name of the first base class (NULL if none).

wxClassInfo::GetBaseClassName?2

char* GetBaseClassName2() const

Returns the name of the second base class (NULL if none).

wxClassInfo::GetClassName

char * GetClassName() const

Returns the string form of the class name.

wxClassinfo::GetSize

int GetSize() const

Returns the size of the class.

wxClassInfo::InitializeClasses

static void InitializeClasses()

Initializes pointers in the wxClassInfo objects for fast execution of IsKindOf. Called in
base wxWindows library initialization.

120

CHAPTER 5

wxClassinfo::IsKindOf

bool IsKindOf(wxClassInfo* info)

Returns TRUE if this class is a kind of (inherits from) the given class.

wxClientDC

A wxClientDC must be constructed if an application wishes to paint on the client area of
a window from outside an OnPaint event. This should normally be constructed as a
temporary stack object; don't store a wxClientDC obiject.

To draw on a window from within OnPaint, construct a wxPaintDC (p. 763) object.

To draw on the whole window including decorations, construct a wxWindowDC (p. 1239)
object (Windows only).

Derived from

wxWindowDC (p. 1239)
wxDC (p. 282)

Include files
<wx/dcclient.h>
See also

wxDC (p. 282), wxMemoryDC (p. 682), wxPaintDC (p. 763), wxWindowDC (p. 1239),
wxScreenDC (p. 906)

wxClientDC::wxClientDC

wxClientDC(wxWindow* window)

Constructor. Pass a pointer to the window on which you wish to paint.

wxClipboard

A class for manipulating the clipboard. Note that this is not compatible with the clipboard

121

CHAPTER 5

class from wxWindows 1.xx, which has the same name but a different implementation.
To use the clipboard, you call member functions of the global wxTheClipboard object.
See also the wxDataObject overview (p. 1431) for further information.

Call wxClipboard::Open (p. 124) to get ownership of the clipboard. If this operation
returns TRUE, you now own the clipboard. Call wxClipboard::SetData (p. 124) to put
data on the clipboard, or wxClipboard::GetData (p. 123) to retrieve data from the
clipboard. Call wxClipboard::Close (p. 123) to close the clipboard and relinquish
ownership. You should keep the clipboard open only momentarily.

For example:
/[l Wite sone text to the clipboard

i f (wxThed i pboard->0Cpen())

{
/1 This data objects are held by the clipboard,

/1 so do not delete themin the app.
wxTheC i pboar d- >Set Dat a(new wxText Dat aCbj ect (" Sone text"));
wxThed i pboar d- >Cl ose() ;

}

// Read sone text
i f (wxThed i pboard->0pen())

i f (wxThed i pboar d->I sSupported(wxDF TEXT))

wxText Dat aCbj ect dat a;
wxThed i pboar d- >Get Dat a(data);
wxMessageBox(data. Get Text());

}
wxThed i pboar d- >0 ose();
}

Derived from
wxObiject (p. 750)
Include files
<wx/clipbrd.h>
See also

Drag and drop overview (p. 1429), wxDataObject (p. 197)

wxClipboard::wxClipboard

wxClipboard()

122

CHAPTER 5

Constructor.

wxClipboard::~wxClipboard

~wxClipboard()

Destructor.

wxClipboard::AddData

bool AddData(wxDataObject* data)

Call this function to add the data object to the clipboard. You may call this function
repeatedly after having cleared the clipboard using wxClipboard::Clear (p. 123).

After this function has been called, the clipboard owns the data, so do not delete the
data explicitly.

See also

wxClipboard::SetData (p. 124)

wxClipboard::Clear

void Clear()

Clears the global clipboard object and the system's clipboard if possible.

wxClipboard::Close

bool Close()

Call this function to close the clipboard, having opened it with wxClipboard::Open (p.
124).

wxClipboard::GetData

bool GetData(wxDataObject& data)

Call this function to fill data with data on the clipboard, if available in the required format.
Returns TRUE on success.

wxClipboard::IsOpened

123

CHAPTER 5

bool IsOpened() const

Returns TRUE if the clipboard has been opened.

wxClipboard::IsSupported

bool IsSupported(const wxDataFormat& format)

Returns TRUE if the format of the given data object is available on the clipboard.

wxClipboard::Open

bool Open()

Call this function to open the clipboard before calling wxClipboard::SetData (p. 124) and
wxClipboard::GetData (p. 123).

Call wxClipboard::Close (p. 123) when you have finished with the clipboard. You should
keep the clipboard open for only a very short time.

Returns TRUE on success. This should be tested (as in the sample shown above).

wxClipboard::SetData

bool SetData(wxDataObject* data)

Call this function to set the data object to the clipboard. This function will clear all
previous contents in the clipboard, so calling it several times does not make any sense.

After this function has been called, the clipboard owns the data, so do not delete the
data explicitly.

See also

wxClipboard::AddData (p. 123)

wxClipboard::UsePrimarySelection

void UsePrimarySelection(bool primary = TRUE)

On platforms supporting it (currently only GTK), selects the so called PRIMARY
SELECTION as the clipboard as opposed to the normal clipboard, if primary is TRUE.

124

CHAPTER 5

wxCloseEvent

This event class contains information about window and session close events.
Derived from

wxEvent (p. 377)

Include files

<wx/event.h>

Event table macros

To process a close event, use these event handler macros to direct input to member
functions that take a wxCloseEvent argument.

EVT_CLOSE(func) Process a close event, supplying the member
function. This event applies to wxFrame and
wxDialog classes.

EVT_QUERY_END_SESSION(func) Process a query end session event, supplying
the member function. This event applies to
WxApp only.

EVT_END_SESSION(func) Process an end session event, supplying the
member function. This event applies to wxApp
only.

See also
wxWindow::OnCloseWindow (p. 1213), wxWindow::Close (p. 1195),

WxApp::OnQueryEndSession (p. 28), wxApp::OnEndSession (p. 27), Window deletion
overview (p. 1378)

wxCloseEvent::wxCloseEvent

wxCloseEvent(WXTYPE commandEventType = 0, int id = 0)

Constructor.

wxCloseEvent::CanVeto

bool CanVeto()

125

CHAPTER 5

Returns TRUE if you can veto a system shutdown or a window close event. Vetoing a
window close event is not possible if the calling code wishes to force the application to
exit, and so this function must be called to check this.

wxCloseEvent::GetLoggingOff

bool GetLoggingOff() const

Returns TRUE if the user is logging off.

wxCloseEvent::GetSessionEnding

bool GetSessionEnding() const

Returns TRUE if the session is ending.

wxCloseEvent::GetForce

bool GetForce() const

Returns TRUE if the application wishes to force the window to close. This will shortly be
obsolete, replaced by CanVeto.

wxCloseEvent::SetCanVeto

void SetCanVeto(bool canVeto)

Sets the 'can veto' flag.

wxCloseEvent::SetForce

void SetForce(bool force) const

Sets the 'force’ flag.

wxCloseEvent::SetLoggingOff

void SetLoggingOff(bool loggingOff) const

Sets the 'logging off' flag.

wxCloseEvent::Veto

126

CHAPTER 5

void Veto(bool veto = TRUE)

Call this from your event handler to veto a system shutdown or to signal to the calling
application that a window close did not happen.

You can only veto a shutdown if wxCloseEvent::CanVeto (p. 125) returns TRUE.

wxCmdLineParser

wxCmdLineParser is a class for parsing command line.

It has the following features:
1. distinguishes options, switches and parameters; allows option grouping
2. allows both short and long options
3. automatically generates the usage message from the command line description
4. does type checks on the options values (number, date, ...).

To use it you should follow these steps:
1. construct (p. 129) an object of this class giving it the command line to parse and
optionally its description or use AddXXX() functions later

2. call Parse()
3. use Found() to retrieve the results
In the documentation below the following terminology is used:

switch This is a boolean option which can be given or
not, but which doesn't have any value. We use
the word switch to distinguish such boolean
options from more generic options like those
described below. For example, - v might be a
switch meaning "enable verbose mode".

option Option for us here is something which comes
with a value 0 unlike a switch. For example, -
o: fi | ename might be an option which allows
to specify the name of the output file.

parameter This is a required program argument.

Derived from
No base class

Include files

127

CHAPTER 5

<wx/cmdline.h>
Constants

The structure wxCmdLineEntryDesc is used to describe the one command line switch,
option or parameter. An array of such structures should be passed to SetDesc() (p. 133).
Also, the meanings of parameters of the AddXXX() functions are the same as of the
corresponding fields in this structure:

struct wxCndLi neEntryDesc

{
wxCrdLi neEnt ryType ki nd;

const wxChar *short Nane;
const wxChar *| ongNane;
const wxChar *description;
wxCndLi nePar anTType type;
int flags;

}s

The type of a command line entity is in the ki nd field and may be one of the following
constants:

enum wxCrdLi neEnt ryType

wxCVD_LI NE_SW TCH,

wxCVD_LI NE_OPTI ON,

wxCVD_LI NE_PARAM

wxCVD_LI NE_NONE /] use this to termnate the Iist

The field shor t Nane is the usual, short, name of the switch or the option.| ongNane is
the corresponding long name or NULL if the option has no long name. Both of these
fields are unused for the parameters. Both the short and long option names can contain
only letters, digits and the underscores.

descri pti on is used by the Usage() (p. 134) method to construct a help message
explaining the syntax of the program.

The possible values of t ype which specifies the type of the value accepted by an option
or parameter are:

enum wxCrrdLi nePar anilype
wxCVD LI NE_ VAL STRING // default
wxCVD_LI NE_VAL NUMBER,

WxCMD_LI NE_VAL_DATE,
wWxCMVD_LI NE_VAL_NONE

Finally, the f | ags field is a combination of the following bit masks:

128

CHAPTER 5

enum

WxCMVD_LI NE_OPTI ON_MANDATORY
WxCVD_LI NE_PARAM OPTI ONAL
WXCMD_LI NE_PARAM MULTI PLE

0x01, // this option nust be given
0x02, // the paraneter nmay be onmitted
0x04, // the paraneter may be

r epeat ed

wxCVD_LI NE_OPTI ON_HELP = 0x08, // this option is a help
request

wxCVD_LI NE_NEEDS_SEPARATOR = 0x10, // nust have sep before the
val ue

Notice that by default (i.e. if flags are just 0), options are optional (sic) and each call to
AddParam() (p. 134) allows one more parameter - this may be changed by giving non-
default flags to it, i.e. use wxCVD_LI NE_OPTI ON_MANDATOCRY to require that the option
is given and wxCVD_LI NE_PARAM OPTI ONAL to make a parameter optional. Also,
wxCMVD_LI NE_PARAM MJLTI PLE may be specified if the programs accepts a variable
number of parameters - but it only can be given for the last parameter in the command
line description. If you use this flag, you will probably need to use GetParamCount (p.
135) to retrieve the number of parameters effectively specified after calling Parse (p.
134).

The last flag wxCVD_LI NE_NEEDS_SEPARATOR can be specified to require a separator
(either a colon, an equal sign or white space) between the option name and its value. By
default, no separator is required.

See also

wxApp::argc (p. 22) and wxApp::argv (p. 23)
console sample

Construction

Before Parse (p. 134) can be called, the command line parser object must have the
command line to parse and also the rules saying which switches, options and
parameters are valid - this is called command line description in what follows.

You have complete freedom of choice as to when specify the required information, the
only restriction is that it must be done before calling Parse (p. 134).

To specify the command line to parse you may use either one of constructors accepting
it (wxCmdLineParser(argc, argv) (p. 131) or wxCmdLineParser (p. 131) usually) or, if
you use the default constructor (p. 131), you can do it later by calling SetCmdLine (p.
132).

The same holds for command line description: it can be specified either in the
constructor (without command line (p. 131) or together with it (p. 131)) or constructed

129

CHAPTER 5

later using either SetDesc (p. 133) or combination of AddSwitch (p. 134), AddOption (p.
134) and AddParam (p. 134) methods.

Using constructors or SetDesc (p. 133) uses a (usually const st at i ¢) table containing
the command line description. If you want to decide which options to acccept during the
run-time, using one of the AddXXX() functions above might be preferable.

Customization

wxCmdLineParser has several global options which may be changed by the application.
All of the functions described in this section should be called before Parse (p. 134).

First global option is the support for long (also known as GNU-style) options. The long
options are the ones which start with two dashes (" - - ") and look like this: - - ver bose,
i.e. they generally are complete words and not some abbreviations of them. As long
options are used by more and more applications, they are enabled by default, but may
be disabled with DisableLongOptions (p. 133).

Another global option is the set of characters which may be used to start an option
(otherwise, the word on the command line is assumed to be a parameter). Under Unix,
' -' is always used, but Windows has at least two common choices for this: ' -' and

" /' .Some programs also use ' +' . The default is to use what suits most the current

platform, but may be changed with SetSwitchChars (p. 132) method.

Finally, SetLogo (p. 133) can be used to show some application-specific text before the
explanation given by Usage (p. 134) function.

Parsing command line

After the command line description was constructed and the desiredoptions were set,
you can finally call Parse (p. 134) method. It returns O if the command line was correct
and was parsed, -1 if the help option was specified (this is a separate case as, normally,
the program will terminate after this) or a positive number if there was an error during the
command line parsing.

In the latter case, the appropriate error message and usage information are logged by
wxCmdLineParser itself using the standard wxWindows logging functions.

Getting results

After calling Parse (p. 134) (and if it returned 0), you may access the results of parsing
using one of overloaded Found() methods.

For a simple switch, you will simply call Found (p. 135) to determine if the switch was
given or not, for an option or a parameter, you will call a version of Found() which also
returns the associated value in the provided variable. All Found() functions return

130

CHAPTER 5

TRUE if the switch or option were found in the command line or FALSE if they were not
specified.

wxCmdLineParser::wxCmdLineParser

wxCmdLineParser()

Default constructor. You must use SetCmdLine (p. 132) or SetCmdLinelater. (p. 132)
later.

wxCmdLineParser::wxCmdLineParser

wxCmdLineParser(int argc, char** argv)
Constructor specifies the command line to parse. This is the traditional (Unix) command

line format. The parameters argc and argv have the same meaning as for nai n()
function.

wxCmdLineParser::wxCmdLineParser

wxCmdLineParser(const wxString& cmdline)

Constructor specifies the command line to parse in Windows format. The parameter
cmdline has the same meaning as the corresponding parameter of W nMai n() .

wxCmdLineParser::wxCmdLineParser

wxCmdLineParser(const wxCmdLineEntryDesc* desc)

Same as wxCmdLineParser (p. 131), but also specifies the command line description (p.
133).

wxCmdLineParser::wxCmdLineParser

wxCmdLineParser(const wxCmdLineEntryDesc* desc, int argc, char** argv)

Same as wxCmdLineParser (p. 131), but also specifies the command line description (p.
133).

wxCmdLineParser::wxCmdLineParser

131

CHAPTER 5

wxCmdLineParser(const wxCmdLineEntryDesc* desc, const wxString& cmdline)

Same as wxCmdLineParser (p. 131), but also specifies the command line description (p.
133).

wxCmdLineParser::SetCmdLine

void SetCmdLine(int argc, char** argv)
Set command line to parse after using one of the constructors which don't do it.
See also

wxCmdLineParser (p. 131)

wxCmdLineParser::SetCmdLine

void SetCmdLine(const wxString& cmdline)
Set command line to parse after using one of the constructors which don't do it.
See also

wxCmdLineParser (p. 131)

wxCmdLineParser::~wxCmdLineParser

~wxCmdLineParser()
Frees resources allocated by the object.

NB: destructor is not virtual, don't use this class polymorphically.

wxCmdLineParser::SetSwitchChars

void SetSwitchChars(const wxString& switchChars)

switchChars contains all characters with which an option or switch may start. Default is
"-" for Unix, " - /" for Windows.

wxCmdLineParser::EnableLongOptions

void EnableLongOptions(bool enable = TRUE)

Enable or disable support for the long options.

132

CHAPTER 5

As long options are not (yet) POSIX-compliant, this option allows to disable them.
See also

Customization (p. 130)

wxCmdLineParser::DisableLongOptions

void DisableLongOptions()

lentical to EnableLongOptions(FALSE) (p. 132).

wxCmdLineParser::SetLogo

void SetLogo(const wxString& logo)

logo is some extra text which will be shown by Usage (p. 134) method.

wxCmdLineParser::SetDesc

void SetDesc(const wxCmdLineEntryDesc* desc)
Construct the command line description
Take the command line description from the wxCMD_LINE_NONE terminated table.

Example of usage:

static const wxCndLi neEntryDesc cndLi neDesc[] =

{
{ wxCMD_LINE_SWTCH, "v", "verbose", "be verbose" },
{ wxCVMD LINE SWTCH, "qg", "quiet", "be quiet" },
{ w<CMD_LINE_OPTION, "o", "output", "output file" },
{ wCVD_LINE_OPTION, "i", "input", “input dir" },

{ wxCVD_LI NE_OPTI ON, "s"
wxCVD_LI NE_VAL_NUMBER 1},

{ wxCMD_LINE_OPTION, "d", "date", "output file date",
wxCVD_LI NE_VAL_DATE },

"size", "out put bl ock size",

{ WXCMD_LI NE_PARAM NULL, NULL, "input file",
WXCMD_LI NE_VAL_STRI NG, wxCMD_LI NE_PARAM MULTI PLE },

{ wWwxCVD_LI NE_NONE }
b

wxCndLi nePar ser parser;

133

CHAPTER 5

par ser. Set Desc(cndLi neDesc) ;

wxCmdLineParser::AddSwitch

void AddSwitch(const wxString& name, const wxString& Ing = wxEmptyString,
const wxString& desc = wxEmptyString, int flags = 0)

Add a switch name with an optional long name Ing (no long name if it is empty, which is
default), description desc and flags flags to the command line description.

wxCmdLineParser::AddOption

void AddOption(const wxString& name, const wxString& Ing = wxEmptyString,
const wxString& desc = wxEmptyString, wxCmdLineParamType type =
wxCMD_LINE_VAL_STRING, int flags = 0)

Add an option name with an optional long name Ing (no long name if it is empty, which is

default) taking a value of the given type (string by default) to the command line
description.

wxCmdLineParser::AddParam

void AddParam(const wxString& desc = wxEmptyString, wxCmdLineParamType
type = wxCMD_LINE_VAL_STRING, int flags = 0)

Add a parameter of the given type to the command line description.

wxCmdLineParser::Parse

int Parse()

Parse the command line, return 0 if ok, -1 if " - h" or"- - hel p" option was encountered
and the help message was given or a positive value if a syntax error occured.

wxCmdLineParser::Usage

void Usage()

Give the standard usage message describing all program options. It will use the options
and parameters descriptions specified earlier, so the resulting message will not be
helpful to the user unless the descriptions were indeed specified.

See also

SetLogo (p. 133)

134

CHAPTER 5

wxCmdLineParser::Found

bool Found(const wxString& name) const

Returns TRUE if the given switch was found, FALSE otherwise.

wxCmdLineParser::Found

bool Found(const wxString& name, wxString* value) const

Returns TRUE if an option taking a string value was found and stores the value in the
provided pointer (which should not be NULL).

wxCmdLineParser::Found

bool Found(const wxString& name, long* value) const

Returns TRUE if an option taking an integer value was found and stores the value in the
provided pointer (which should not be NULL).

wxCmdLineParser::Found

bool Found(const wxString& name, wxDateTime* value) const

Returns TRUE if an option taking a date value was found and stores the value in the
provided pointer (which should not be NULL).

wxCmdLineParser::GetParamCount

size_t GetParamCount() const

Returns the number of parameters found. This function makes sense mostly if you had
used wxCVD_LI NE_PARAM MULTI PLE flag.

wxCmdLineParser::GetParam

wxString GetParam(size_t n = Ou) const
Returns the value of Nth parameter (as string only for now).

See also

135

CHAPTER 5

GetParamCount (p. 135)

wxColour

A colour is an object representing a combination of Red, Green, and Blue (RGB)
intensity values, and is used to determine drawing colours. See the entry for
wxColourDatabase (p. 141) for how a pointer to a predefined, named colour may be
returned instead of creating a new colour.

Valid RGB values are in the range 0 to 255.

Derived from

wxObiject (p. 750)

Include files

<wx/colour.h>

Predefined objects

Objects:

wxNullColour

Poainters:

wWxBLACK

WXWHITE

WXRED

wxBLUE

wWxXGREEN

WxCYAN

wWXLIGHT_GREY

See also

wxColourDatabase (p. 141), wxPen (p. 775), wxBrush (p. 80), wxColourDialog (p. 142)

wxColour::wxColour

wxColour()

Default constructor.

136

CHAPTER 5

wxColour(const unsigned char red, const unsigned char green, const unsigned
char blue)

Constructs a colour from red, green and blue values.

wxColour(const wxString& colourNname)

Constructs a colour object using a colour name listed in wxTheColourDatabase.
wxColour(const wxColour& colour)

Copy constructor.

Parameters

red
The red value.

green
The green value.

blue
The blue value.

colourName
The colour name.

colour
The colour to copy.

See also
wxColourDatabase (p. 141)
wxPython note: Constructors supported by wxPython are:

wxColour(red=0, green=0, blue=0)
wxNamedColour(name)

wxColour::Blue

unsigned char Blue() const

Returns the blue intensity.

wxColour::GetPixel

137

CHAPTER 5

long GetPixel() const

Returns a pixel value which is platform-dependent. On Windows, a COLORREF is
returned. On X, an allocated pixel value is returned.

-1 is returned if the pixel is invalid (on X, unallocated).

wxColour::Green

unsigned char Green() const

Returns the green intensity.

wxColour::0k

bool Ok() const

Returns TRUE if the colour object is valid (the colour has been initialised with RGB
values).

wxColour::Red

unsigned char Red() const

Returns the red intensity.

wxColour::Set

void Set(const unsigned char red, const unsigned char green, const unsigned char
blue)

Sets the RGB intensity values.

wxColour::operator =

wxColour& operator =(const wxColouré& colour)

Assignment operator, taking another colour object.

wxColour& operator =(const wxString& colourName)

Assignment operator, using a colour name to be found in the colour database.

See also

138

CHAPTER 5

wxColourDatabase (p. 141)

wxColour::operator ==

bool operator ==(const wxColour& colour)

Tests the equality of two colours by comparing individual red, green blue colours.

wxColour::operator =

bool operator I=(const wxColour& colour)

Tests the inequality of two colours by comparing individual red, green blue colours.

wxColourData

This class holds a variety of information related to colour dialogs.
Derived from

wxObiject (p. 750)

Include files

<wx/cmndata.h>

See also

wxColour (p. 136), wxColourDialog (p. 142), wxColourDialog overview (p. 1406)

wxColourData::wxColourData

wxColourData()

Constructor. Initializes the custom colours to white, the data colour setting to black, and
the choose full setting to TRUE.

wxColourData::~wxColourData

139

CHAPTER 5

~wxColourData()

Destructor.

wxColourData::GetChooseFull

bool GetChooseFull() const

Under Windows, determines whether the Windows colour dialog will display the full
dialog with custom colour selection controls. Has no meaning under other platforms.

The default value is TRUE.

wxColourData::GetColour

wxColour& GetColour() const
Gets the current colour associated with the colour dialog.

The default colour is black.

wxColourData::GetCustomColour

wxColour& GetCustomColour(int i) const

Gets the ith custom colour associated with the colour dialog. i should be an integer
between 0 and 15.

The default custom colours are all white.

wxColourData::SetChooseFull

void SetChooseFull(const bool flag)

Under Windows, tells the Windows colour dialog to display the full dialog with custom
colour selection controls. Under other platforms, has no effect.

The default value is TRUE.

wxColourData::SetColour

void SetColour(const wxColour& colour)

Sets the default colour for the colour dialog.

140

CHAPTER 5

The default colour is black.

wxColourData::SetCustomColour

void SetCustomColour(int i, const wxColour& colour)
Sets the ith custom colour for the colour dialog. i should be an integer between 0 and 15.

The default custom colours are all white.

wxColourData::operator =

void operator =(const wxColourData& data)

Assingment operator for the colour data.

wxColourDatabase

wxWindows maintains a database of standard RGB colours for a predefined set of
named colours (such as "BLACK", "LIGHT GREY"). The application may add to this set
if desired by using Append. There is only one instance of this class:
wxTheColourDatabase.

Derived from

wxList (p. 619)
wxObiject (p. 750)

Include files

<wx/gdicmn.h>

Remarks

The colours in the standard database are as follows:

AQUAMARINE, BLACK, BLUE, BLUE VIOLET, BROWN, CADET BLUE, CORAL,
CORNFLOWER BLUE, CYAN, DARK GREY, DARK GREEN, DARK OLIVE GREEN,
DARK ORCHID, DARK SLATE BLUE, DARK SLATE GREY DARK TURQUOISE, DIM
GREY, FIREBRICK, FOREST GREEN, GOLD, GOLDENROD, GREY, GREEN, GREEN
YELLOW, INDIAN RED, KHAKI, LIGHT BLUE, LIGHT GREY, LIGHT STEEL BLUE,
LIME GREEN, MAGENTA, MAROON, MEDIUM AQUAMARINE, MEDIUM BLUE,
MEDIUM FOREST GREEN, MEDIUM GOLDENROD, MEDIUM ORCHID, MEDIUM
SEA GREEN, MEDIUM SLATE BLUE, MEDIUM SPRING GREEN, MEDIUM
TURQUOISE, MEDIUM VIOLET RED, MIDNIGHT BLUE, NAVY, ORANGE, ORANGE

141

CHAPTER 5

RED, ORCHID, PALE GREEN, PINK, PLUM, PURPLE, RED, SALMON, SEA GREEN,
SIENNA, SKY BLUE, SLATE BLUE, SPRING GREEN, STEEL BLUE, TAN, THISTLE,
TURQUOISE, VIOLET, VIOLET RED, WHEAT, WHITE, YELLOW, YELLOW GREEN.
See also

wxColour (p. 136)

wxColourDatabase::wxColourDatabase

wxColourDatabase()

Constructs the colour database.

wxColourDatabase::FindColour

wxColour* FindColour(const wxString& colourName)

Finds a colour given the name. Returns NULL if not found.

wxColourDatabase::FindName

wxString FindName(const wxColour& colour) const

Finds a colour name given the colour. Returns NULL if not found.

wxColourDatabase::Initialize

void Initialize()

Initializes the database with a number of stock colours. Called by wxWindows on start-
up.

wxColourDialog

This class represents the colour chooser dialog.
Derived from

wxDialog (p. 312)

142

CHAPTER 5

wxWindow (p. 1190)
wxEvtHandler (p. 380)
wxObiject (p. 750)
Include files
<wx/colordlg.h>

See also

wxColourDialog Overview (p. 1406), wxColour (p. 136), wxColourData (p. 139)

wxColourDialog::wxColourDialog

wxColourDialog(wxWindow* parent, wxColourData* data = NULL)

Constructor. Pass a parent window, and optionally a pointer to a block of colour data,
which will be copied to the colour dialog's colour data.

See also

wxColourData (p. 139)

wxColourDialog::~wxColourDialog

~wxColourDialog()

Destructor.

wxColourDialog::Create

bool Create(wxWindow* parent, wxColourData* data = NULL)

Same as constructor (p. 143).

wxColourDialog::GetColourData

wxColourData& GetColourData()

Returns the colour data (p. 139) associated with the colour dialog.

wxColourDialog::ShowModal

143

CHAPTER 5

int ShowModal()

Shows the dialog, returning wxID_OK if the user pressed OK, and wxOK_CANCEL
otherwise.

wxComboBox

A combobox is like a combination of an edit control and a listbox. It can be displayed as
static list with editable or read-only text field; or a drop-down list with text field; or a drop-
down list without a text field.

A combobox permits a single selection only. Combobox items are numbered from zero.
Derived from

wxChoice (p. 113)

wxControl (p. 177)

wxWindow (p. 1190)

wxEvtHandler (p. 380)

wxObiject (p. 750)

Include files

<wx/combobox.h>

Window styles

wxCB_SIMPLE Creates a combobox with a permanently
displayed list. Windows only.

wxCB_DROPDOWN Creates a combobox with a drop-down list.

wxCB_READONLY Same as wxCB_DROPDOWN but only the

strings specified as the combobox choices can
be selected, it is impossible to select (even
from a program) a string which is not in the
choices list.

wxCB_SORT Sorts the entries in the list alphabetically.

See also window styles overview (p. 1378).
Event handling

EVT_COMBOBOX(id, func) Process a
wXEVT_COMMAND_COMBOBOX_SELECTE
D event, when an item on the list is selected.

EVT_TEXT(id, func) Process a
WXEVT_COMMAND_TEXT_UPDATED event,

144

CHAPTER 5

when the combobox text changes.

See also

wxListBox (p. 625), wxTextCtrl (p. 1075), wxChoice (p. 113), wxCommandEvent (p. 153)

wxComboBox::wxComboBox

wxComboBox()

Default constructor.

wxComboBox(wxWindow* parent, wxWindowID id, const wxString& value =",
const wxPoint& pos = wxDefaultPosition, const wxSize& size = wxDefaultSize, int n,
const wxString choices|], long style = 0, const wxValidator& validator =

wxDefaultValidator, const wxString& name = "comboBox")
Constructor, creating and showing a combobox.
Parameters

parent
Parent window. Must not be NULL.

id
Window identifier. A value of -1 indicates a default value.
pos
Window position.
size
Window size. If the default size (-1, -1) is specified then the window is sized
appropriately.
n
Number of strings with which to initialise the control.
choices
An array of strings with which to initialise the control.
style
Window style. See wxComboBox (p. 144).
validator
Window validator.
name

145

CHAPTER 5

Window name.
See also
wxComboBox::Create (p. 146), wxValidator (p. 1172)

wxPython note: The wxComboBox constructor in wxPython reduces the nand
choi ces arguments are to a single argument, which is a list of strings.

wxComboBox::~wxComboBox

~wxComboBox()

Destructor, destroying the combobox.

wxComboBox::Append

void Append(const wxString& item)

Adds the item to the end of the combobox.

void Append(const wxString& item, void* clientData)

Adds the item to the end of the combobox, associating the given data with the item.
Parameters

item
The string to add.

clientData
Client data to associate with the item.

wxComboBox::Clear

void Clear()

Clears all strings from the combobox.

wxComboBox::Create

un

bool Create(wxWindow* parent, wxWindowID id, const wxString& value =", const
wxPoint& pos = wxDefaultPosition, const wxSize& size = wxDefaultSize, int n, const
wxString choices|], long style = 0, const wxValidator& validator = wxDefaultValidator,
const wxString& name = "comboBox")

146

CHAPTER 5

Creates the combobox for two-step construction. Derived classes should call or replace
this function. See wxComboBox::wxComboBox (p. 145) for further details.

wxComboBox::Copy

void Copy()

Copies the selected text to the clipboard.

wxComboBox::Cut

void Cut()

Copies the selected text to the clipboard and removes the selection.

wxComboBox::Delete

void Delete(int n)

Deletes an item from the combobox.
Parameters

n

The item to delete, starting from zero.

wxComboBox::FindString

int FindString(const wxString& string)
Finds a choice matching the given string.
Parameters

string
The item to find.

Return value

The position if found, or -1 if not found.

wxComboBox::GetClientData

void* GetClientData(int n) const

147

CHAPTER 5

Returns a pointer to the client data associated with the given item (if any).

Parameters

An item, starting from zero.
Return value

A pointer to the client data, or NULL if the item was not found.

wxComboBox::GetlnsertionPoint

long GetlnsertionPoint() const

Returns the insertion point for the combobox's text field.

wxComboBox::GetLastPosition

long GetLastPosition() const

Returns the last position in the combobox text field.

wxComboBox::GetSelection

int GetSelection() const

Gets the position of the selected string, or -1 if there is no selection.

wxComboBox::GetString

wxString GetString(int n) const
Returns the string at position n.

Parameters

The item position, starting from zero.
Return value

The string if the item is found, otherwise the empty string.

wxComboBox::GetStringSelection

148

CHAPTER 5

wxString GetStringSelection() const

Gets the selected string.

wxComboBox::GetValue

wxString GetValue() const

Returns the current value in the combobox text field.

wxComboBox::Number

int Number() const

Returns the number of items in the combobox list.
wxComboBox::Paste

void Paste()

Pastes text from the clipboard to the text field.

wxComboBox::Replace

void Replace(long from, long to, const wxString& text)
Replaces the text between two positions with the given text, in the combobox text field.
Parameters

from
The first position.

to
The second position.

text
The text to insert.

wxComboBox::Remove

void Remove(long from, long to)
Removes the text between the two positions in the combobox text field.

Parameters

149

CHAPTER 5

from
The first position.

to
The last position.

wxComboBox::SetClientData

void SetClientData(int n, void* data)
Associates the given client data pointer with the given item.
Parameters

n
The zero-based item.

data
The client data.

wxComboBox::SetinsertionPoint

void SetlnsertionPoint(long pos)

Sets the insertion point in the combobox text field.
Parameters

pos

The new insertion point.

wxComboBox::SetlnsertionPointEnd

void SetinsertionPointEnd()

Sets the insertion point at the end of the combobox text field.

wxComboBox::SetSelection

void SetSelection(int n)

Selects the given item in the combobox list. This does not cause a
WXEVT_COMMAND_COMBOBOX_SELECTED event to get emitted.

void SetSelection(long from, long to)

150

CHAPTER 5

Selects the text between the two positions, in the combobox text field.
Parameters

n
The zero-based item to select.

from
The first position.

to
The second position.

wxPython note: The second form of this method is called Set Mar k in wxPython.

wxComboBox::SetValue

void SetValue(const wxString& text)
Sets the text for the combobox text field.

NB: For a combobox with wxCB_READONLY style the string must be in the combobox
choices list, otherwise the call to SetValue() is ignored.

Parameters

text
The text to set.

wxCommand

wxCommand is a base class for modelling an application command, which is an action
usually performed by selecting a menu item, pressing a toolbar button or any other
means provided by the application to change the data or view.

Derived from

wxObiject (p. 750)

Include files

<wx/docview.h>

See also

151

CHAPTER 5

Overview (p. 1414)

wxCommand::wxCommand

wxCommand(bool canUndo = FALSE, const wxString& name = NULL)

Constructor. wxCommand is an abstract class, so you will need to derive a new class
and call this constructor from your own constructor.

canUndo tells the command processor whether this command is undo-able. You can
achieve the same functionality by overriding the CanUndo member function (if for
example the criteria for undoability is context-dependant).

name must be supplied for the command processor to display the command name in the
application's edit menu.

wxCommand::~wxCommand

~wxCommand()

Destructor.

wxCommand::CanUndo

bool CanUndo()

Returns TRUE if the command can be undone, FALSE otherwise.

wxCommand::Do

bool Do()

Override this member function to execute the appropriate action when called. Return
TRUE to indicate that the action has taken place, FALSE otherwise. Returning FALSE
will indicate to the command processor that the action is not undoable and should not be
added to the command history.

wxCommand::GetName

wxString GetName()

Returns the command name.

152

CHAPTER 5

wxCommand::Undo

bool Undo()

Override this member function to un-execute a previous Do. Return TRUE to indicate
that the action has taken place, FALSE otherwise. Returning FALSE will indicate to the
command processor that the action is not redoable and no change should be made to
the command history.

How you implement this command is totally application dependent, but typical strategies
include:

Perform an inverse operation on the last modified piece of data in the document.
When redone, a copy of data stored in command is pasted back or some
operation reapplied. This relies on the fact that you know the ordering of Undos;
the user can never Undo at an arbitrary position in the command history.
Restore the entire document state (perhaps using document transactioning).
Potentially very inefficient, but possibly easier to code if the user interface and
data are complex, and an 'inverse execute' operation is hard to write.

The docview sample uses the first method, to remove or restore segments in the
drawing.

wxCommandEvent

This event class contains information about command events, which originate from a
variety of simple controls. More complex controls, such as wxTreeCtrl (p. 1139), have
separate command event classes.

Derived from

wxEvent (p. 377)

Include files

<wx/event.h>

Event table macros

To process a menu command event, use these event handler macros to direct input to
member functions that take a wxCommandEvent argument.

EVT_COMMAND(id, event, func) Process a command, supplying the window
identifier, command event identifier, and
member function.

EVT_COMMAND_RANGE(id1, id2, event, func) Process a command for a range of

153

CHAPTER 5

EVT_BUTTON(id, func)

EVT_CHECKBOX(id, func)

EVT_CHOICE(id, func)

EVT_LISTBOX(id, func)

EVT_LISTBOX_DCLICK(id, func)

EVT_TEXT(id, func)

EVT_TEXT_ENTER(id, func)

EVT_MENU(id, func)

EVT_MENU_RANGE(id1, id2, func)

EVT_SLIDER(id, func)

EVT_RADIOBOX(id, func)

EVT_RADIOBUTTON(id, func)

window identifiers, supplying the minimum and
maximum window identifiers, command event
identifier, and member function.

Process a
WXEVT_COMMAND_BUTTON_CLICKED
command, which is generated by a wxButton
control.

Process a
WXEVT_COMMAND_CHECKBOX_CLICKED
command, which is generated by a
wxCheckBox control.

Process a
wxEVT_COMMAND_CHOICE_SELECTED
command, which is generated by a wxChoice
control.

Process a
WXEVT_COMMAND_LISTBOX_SELECTED
command, which is generated by a wxListBox
control.

Process a
WXEVT_COMMAND_LISTBOX_DOUBLECLIC
KED command, which is generated by a
wxListBox control.

Process a
wWxXEVT_COMMAND_TEXT_UPDATED
command, which is generated by a wxTextCtrl
control.

Process a WxEVT_COMMAND_TEXT_ENTER
command, which is generated by a wxTextCtrl
control. Note that you must use
WXTE_PROCESS_ENTER flag when creating
the control if you want it to generate such
events.

Process a
wxEVT_COMMAND_MENU_SELECTED
command, which is generated by a menu item.
Process a
wxEVT_COMMAND_MENU_RANGE
command, which is generated by a range of
menu items.

Process a
wWXEVT_COMMAND_SLIDER_UPDATED
command, which is generated by a wxSlider
control.

Process a
wxEVT_COMMAND_RADIOBOX_SELECTED
command, which is generated by a
wxRadioBox control.

Process a
wWXEVT_COMMAND_RADIOBUTTON_SELEC
TED command, which is generated by a

154

CHAPTER 5

wxRadioButton control.

EVT_SCROLLBAR(id, func) Process a
wWXEVT_COMMAND_SCROLLBAR_UPDATED
command, which is generated by a wxScrollBar
control. This is provided for compatibility only;
more specific scrollbar event macros should be
used instead (see wxScrollEvent (p. 914)).

EVT_COMBOBOX(id, func) Process a
wWXEVT_COMMAND_COMBOBOX_SELECTE
D command, which is generated by a
wxComboBox control.

EVT_TOOL(id, func) Process a
WXEVT_COMMAND_TOOL_CLICKED event (a
synonym for
wxEVT_COMMAND_MENU_SELECTED).
Pass the id of the tool.

EVT_TOOL_RANGE(id1, id2, func) Process a
WXEVT_COMMAND_TOOL_CLICKED event
for a range id identifiers. Pass the ids of the
tools.

EVT_TOOL_RCLICKED(id, func) Process a
wxEVT_COMMAND_TOOL_RCLICKED event.
Pass the id of the tool.

EVT_TOOL_RCLICKED_RANGE(id1, id2, func) Process a
wxEVT_COMMAND_TOOL_RCLICKED event
for a range of ids. Pass the ids of the tools.

EVT_TOOL_ENTER(id, func) Process a wxEVT_COMMAND_TOOL_ENTER
event. Pass the id of the toolbar itself. The
value of wxCommandEvent::GetSelection is
the tool id, or -1 if the mouse cursor has moved
off a tool.

EVT_COMMAND_LEFT_CLICK(id, func) Process a
WXEVT_COMMAND_LEFT_CLICK command,
which is generated by a control (Windows 95
and NT only).

EVT_COMMAND_LEFT_DCLICK(id, func) Process a
WXEVT_COMMAND_LEFT_DCLICK
command, which is generated by a control
(Windows 95 and NT only).

EVT_COMMAND_RIGHT_CLICK(id, func) Process a
WXEVT_COMMAND_RIGHT_CLICK
command, which is generated by a control
(Windows 95 and NT only).

EVT_COMMAND_SET_FOCUS(id, func) Process a
WXEVT_COMMAND_SET_FOCUS command,
which is generated by a control (Windows 95
and NT only).

EVT_COMMAND_KILL_FOCUS(id, func) Process a
WXEVT_COMMAND_KILL_FOCUS command,
which is generated by a control (Windows 95
and NT only).

155

CHAPTER 5

EVT_COMMAND_ENTER(id, func) Process a wxEVT_COMMAND_ENTER
command, which is generated by a control.

wxCommandEvent::m_clientData

void* m_clientData

Contains a pointer to client data for listboxes and choices, if the event was a selection.
Beware, this is not implemented anyway...

wxCommandEvent::m_commandint

int m_commandint

Contains an integer identifier corresponding to a listbox, choice or radiobox selection
(only if the event was a selection, not a deselection), or a boolean value representing the
value of a checkbox.

wxCommandEvent::m_commandString

char* m_commandString

Contains a string corresponding to a listbox or choice selection.

wxCommandEvent::m_extraLong

long m_extraLong

Extra information. If the event comes from a listbox selection, it is a boolean determining
whether the event was a selection (TRUE) or a deselection (FALSE). A listbox
deselection only occurs for multiple-selection boxes, and in this case the index and
string values are indeterminate and the listbox must be examined by the application.

wxCommandEvent::wxCommandEvent

wxCommandEvent(WXTYPE commandEventType =0, int id = 0)

Constructor.

wxCommandEvent::Checked

156

CHAPTER 5

bool Checked() const

Deprecated, use IsChecked (p. 157) instead.

wxCommandEvent::GetClientData

void* GetClientData()

Returns client data pointer for a listbox or choice selection event (not valid for a
deselection).

wxCommandEvent::GetExtraLong

long GetExtraL.ong()

Returns the m_extraLong member.

wxCommandEvent::GetInt

int GetInt()

Returns the m_commandint member.

wxCommandEvent::GetSelection

int GetSelection()

Returns item index for a listbox or choice selection event (not valid for a deselection).

wxCommandEvent::GetString

char* GetString()

Returns item string for a listbox or choice selection event (not valid for a deselection).

wxCommandEvent::IsChecked

bool IsChecked() const

This method can be used with checkbox and menu events: for the checkboxes, the
method returns TRUE for a selection event and FALSE for a deselection one. For the
menu events, this method indicates if the menu item just has become checked or

157

CHAPTER 5

unchecked (and thus only makes sense for checkable menu items).

wxCommandEvent::IsSelection

bool IsSelection()

For a listbox or choice event, returns TRUE if it is a selection, FALSE if it is a
deselection.

wxCommandEvent::SetClientData

void SetClientData(void* clientData)

Sets the client data for this event.

wxCommandEvent::SetExtraLong

void SetExtraLong(int extraLong)

Sets the m_extraLong member.

wxCommandEvent::Setint

void SetInt(int intCommand)

Sets the m_commandint member.

wxCommandEvent::SetString

void SetString(char* string)

Sets the m_commandString member.

wxCommandProcessor

wxCommandProcessor is a class that maintains a history of wxCommands, with
undo/redo functionality built-in. Derive a new class from this if you want different
behaviour.

Derived from

158

CHAPTER 5

wxObiject (p. 750)
Include files
<wx/docview.h>
See also

wxCommandProcessor overview (p. 1414), wxCommand (p. 151)

wxCommandProcessor::wxCommandProcessor

wxCommandProcessor(int maxCommands = 100)
Constructor.
maxCommands defaults to a rather arbitrary 100, but can be set from 1 to any integer. If

your wxCommand classes store a lot of data, you may wish the limit the number of
commands stored to a smaller number.

wxCommandProcessor::~wxCommandProcessor

~wxCommandProcessor()

Destructor.

wxCommandProcessor::CanUndo

virtual bool CanUndo()

Returns TRUE if the currently-active command can be undone, FALSE otherwise.

wxCommandProcessor::ClearCommands

virtual void ClearCommands()

Deletes all the commands in the list and sets the current command pointer to NULL.

wxCommandProcessor::Do

virtual bool Do()

Executes (redoes) the current command (the command that has just been undone if

159

CHAPTER 5

any).

wxCommandProcessor::GetCommands

wxList& GetCommands() const

Returns the list of commands.

wxCommandProcessor::GetMaxCommands

int GetMaxCommands() const

Returns the maximum number of commands that the command processor stores.

wxCommandProcessor::GetEditMenu

wxMenu* GetEditMenu() const

Returns the edit menu associated with the command processor.

wxCommandProcessor::Initialize

virtual void Initialize()

Initializes the command processor, setting the current command to the last in the list (if
any), and updating the edit menu (if one has been specified).

wxCommandProcessor::SetEditMenu

void SetEditMenu(wxMenu* menu)

Tells the command processor to update the Undo and Redo items on this menu as
appropriate. Set this to NULL if the menu is about to be destroyed and command
operations may still be performed, or the command processor may try to access an
invalid pointer.

wxCommandProcessor::Submit

virtual bool Submit(wxCommand *command, bool storelt = TRUE)

Submits a new command to the command processor. The command processor calls
wxCommand::Do to execute the command,; if it succeeds, the command is stored in the
history list, and the associated edit menu (if any) updated appropriately. If it fails, the

160

CHAPTER 5

command is deleted immediately. Once Submit has been called, the passed command
should not be deleted directly by the application.

storelt indicates whether the successful command should be stored in the history list.

wxCommandProcessor::Undo

virtual bool Undo()

Undoes the command just executed.

wxCondition

wxCondition variables correspond to pthread conditions or to Win32 event objects. They
may be used in a multithreaded application to wait until the given condition becomes true
which happens when the condition becomes signaled.

For example, if a worker thread is doing some long task and another thread has to wait
until it is finished, the latter thread will wait on the condition object and the worker thread
will signal it on exit (this example is not perfect because in this particular case it would
be much better to just Wait() (p. 1113) for the worker thread, but if there are several
worker threads it already makes much more sense).

Once the thread(s) are signaled, the condition then resets to the not signaled state,
ready to fire again.

Derived from
None.
Include files
<wx/thread.h>
See also

wxThread (p. 1106), wxMutex (p. 734)

wxCondition::wxCondition

wxCondition()

Default constructor.

161

CHAPTER 5

wxCondition::~wxCondition

~wxCondition()

Destroys the wxCondition object.

wxCondition::Broadcast

void Broadcast()

Broadcasts to all waiting objects.

wxCondition::Signal

void Signal()

Signals the object.

wxCondition::Wait

void Wait()

Waits indefinitely.

bool Wait(unsigned long sec, unsigned long nsec)
Waits until a signal is raised or the timeout has elapsed.
Parameters

sec
Timeout in seconds

nsec
Timeout nanoseconds component (added to sec).

Return value

The second form returns if the signal was raised, or FALSE if there was a timeout.

wxConfigBase

162

CHAPTER 5

wxConfigBase class defines the basic interface of all config classes. It can not be used
by itself (it is an abstract base class) and you will always use one of its derivations:
wxIniConfig, wxFileConfig, wxRegConfig or any other.

However, usually you don't even need to know the precise nature of the class you're
working with but you would just use the wxConfigBase methods. This allows you to write
the same code regardless of whether you're working with the registry under Win32 or
text-based config files under Unix (or even Windows 3.1 .INI files if you're really
unlucky). To make writing the portable code even easier, wxWindows provides a typedef
wxConfig which is mapped onto the native wxConfigBase implementation on the given
platform: i.e. wxRegConfig under Win32, wxIniConfig under Win16 and wxFileConfig
otherwise.

See config overview (p. 1365) for the descriptions of all features of this class.

It is highly recommended to use static functions Get() and/or Set(), so please have a
look at them. (p. 164)

Derived from
No base class
Include files

<wx/config.h> (to let wxWindows choose a wxConfig class for your platform)
<wx/confbase.h> (base config class)

<wx/fileconf.h> (wxFileconfig class)

<wx/msw/regconf.h> (wxRegConfig class)

<wx/msw/iniconf.h> (wxIniConfig class)

Example

Here is how you would typically use this class:

/1 using wxConfig instead of witing wxFileConfig or wxRegConfig
enhances

/1 portability of the code

wxConfig *config = new wxConfi g("M/AppNane") ;

wxString str;
if (config->Read("LastPrompt"”, &str)) {
/1 last pronpt was found in the config file/registry and its val ue
i s now

/] in str
}
el se {

/1 no last prompt...
}

/1 anot her exanple: using default values and the full path instead of
j ust

163

CHAPTER 5

/1 key nanme: if the key is not found , the value 17 is returned
| ong val ue = config->Read("/Last Run/ Cal cul at edVval ues/ MaxVal ue", -1);

)).at the end of the program we woul d save everythi ng back
config->Wite("LastPronpt", str);
config->Wite("/Last Run/ Cal cul at edVal ues/ MaxVal ue", val ue);

/1 the changes will be witten back autonatically
del ete config;

This basic example, of course, doesn't show all wxConfig features, such as enumerating,
testing for existence and deleting the entries and groups of entries in the config file, its
abilities to automatically store the default values or expand the environment variables on
the fly. However, the main idea is that using this class is easy and that it should normally
do what you expect it to.

NB: in the documentation of this class, the words "config file" also mean "registry hive"

for wxRegConfig and, generally speaking, might mean any physical storage where a
wxConfigBase-derived class stores its data.

Static functions

These functions deal with the "default" config object. Although its usage is not at all
mandatory it may be convenient to use a global config object instead of creating and
deleting the local config objects each time you need one (especially because creating a
wxFileConfig object might be a time consuming operation). In this case, you may create
this global config object in the very start of the program and Set() it as the default. Then,
from anywhere in your program, you may access it using the Get() function. Of course,
you should delete it on the program termination (otherwise, not only a memory leak will
result, but even more importantly the changes won't be written back!).

As it happens, you may even further simplify the procedure described above: you may
forget about calling Set(). When Get() is called and there is no current object, it will
create one using Create() function. To disable this behaviour DontCreateOnDemand() is
provided.

Note: You should use either Set() or Get() because wxWindows library itself would take
advantage of it and could save various information in it. For example wxFontMapper (p.
451) or Unix version of wxFileDialog (p. 410) have ability to use wxConfig class.

Set (p. 175)

Get (p. 171)

Create (p. 170)
DontCreateOnDemand (p. 170)

Constructor and destructor

164

CHAPTER 5

wxConfigBase (p. 169)
~wxConfigBase (p. 170)

Path management

As explained in config overview (p. 1365), the config classes support a file system-like
hierarchy of keys (files) and groups (directories). As in the file system case, to specify a
key in the config class you must use a path to it. Config classes also support the notion
of the current group, which makes it possible to use the relative paths. To clarify all this,
here is an example (it is only for the sake of demonstration, it doesn't do anything
sensible!):

wxConfig *config = new wxConfi g(" FooBar App");

/1 right now the current path is '/’
conf->Wite("RootEntry", 1);

/1 go to sone other place: if the group(s) don't exist, they will be
created
conf - >Set Pat h("/ Gr oup/ Subgr oup") ;

/1 create an entry in subgroup
conf->Wite("SubgroupEntry", 3);

/1 '.." is understood
conf->Wite("../GoupEntry", 2);
conf->SetPath("..");

WXASSERT(conf - >Read(" Subgr oup/ Subgr oupEntry", 0l) == 3);

/1 use absolute path: it is allowed, too
WXASSERT(conf->Read("/RootEntry", 0Ol) == 1);

Warning: it is probably a good idea to always restore the path to its old value on function
exit:

voi d foo(wxConfigBase *confi g)

{
wxString strddPath = confi g->CGet Pat h();

confi g->Set Pat h("/ Foo/ Dat a") ;

confi g->Set Pat h(strd dPat h) ;
}

because otherwise the assert in the following example will surely fail (we suppose here
that foo() function is the same as above except that it doesn't save and restore the path):

voi d bar (wxConfi gBase *confi g)

{
config->Wite("Test", 17);

165

CHAPTER 5

foo(configQ);

/1 we're reading "/Foo/Datal Test" here! -1 will probably be
returned. ..
WXASSERT(config->Read("Test", -1) == 17);
}

Finally, the path separator in wxConfigBase and derived classes is always '/', regardless
of the platform (i.e. it is not "\\' under Windows).

SetPath (p. 176)
GetPath (p. 173)

Enumeration

The functions in this section allow to enumerate all entries and groups in the config file.
All functions here return FALSE when there are no more items.

You must pass the same index to GetNext and GetFirst (don't modify it). Please note
that it is not the index of the current item (you will have some great surprizes with
wxRegConfig if you assume this) and you shouldn't even look at it: it is just a "cookie"
which stores the state of the enumeration. It can't be stored inside the class because it
would prevent you from running several enumerations simultaneously, that's why you
must pass it explicitly.

Having said all this, enumerating the config entries/groups is very simple:

WXArrayString aNanes;

/1 enuneration variabl es
wxString str;
[ong dumy;

/1 first enumall entries
bool bCont = config->GetFirstEntry(str, dummy);
while (bCont) {

aNares. Add(str);

bCont = Get Config()->Get NextEntry(str, dunmy);
}

we have all entry nanmes in aNanes...

/1 now all groups...
bCont = Get Config()->GetFirstGoup(str, dummy);
while (bCont) {

aNares. Add(str);

bCont = Get Confi g()->Get Next Group(str, dunmy);
}

we have all group (and entry) nanes in aNanes...

166

CHAPTER 5

There are also functions to get the number of entries/subgroups without actually
enumerating them, but you will probably never need them.

GetFirstGroup (p. 172)
GetNextGroup (p. 172)
GetFirstEntry (p. 172)
GetNextEntry (p. 172)
GetNumberOfEntries (p. 172)
GetNumberOfGroups (p. 172)

Tests of existence

HasGroup (p. 173)
HasEntry (p. 173)
Exists (p. 171)
GetEntryType (p. 171)

Miscellaneous functions

GetAppName (p. 171)
GetVendorName (p. 173)
SetUmask (p. 176)

Key access

These function are the core of wxConfigBase class: they allow you to read and write
config file data. All Read function take a default value which will be returned if the
specified key is not found in the config file.

Currently, only two types of data are supported: string and long (but it might change in
the near future). To work with other types: for int or bool you can work with function
taking/returning long and just use the casts. Better yet, just use long for all variables
which you're going to save in the config file: chances are that si zeof (bool) ==

si zeof (i nt) == si zeof (I ong) anyhow on your system. For float, double and, in
general, any other type you'd have to translate them to/from string representation and
use string functions.

Try not to read long values into string variables and vice versa: although it just might
work with wxFileConfig, you will get a system error with wxRegConfig because in the
Windows registry the different types of entries are indeed used.

Final remark: the szKey parameter for all these functions can contain an arbitrary path
(either relative or absolute), not just the key name.

Read (p. 173)

167

CHAPTER 5

Write (p. 176)
Flush (p. 171)

Rename entries/groups

The functions in this section allow to rename entries or subgroups of the current group.
They will return FALSE on error. typically because either the entry/group with the original
name doesn't exist, because the entry/group with the new name already exists or
because the function is not supported in this wxConfig implementation.

RenameEntry (p. 175)
RenameGroup (p. 175)

Delete entries/groups

The functions in this section delete entries and/or groups of entries from the config file.
DeleteAll() is especially useful if you want to erase all traces of your program presence:
for example, when you uninstall it.

DeleteEntry (p. 170)

DeleteGroup (p. 170)
DeleteAll (p. 170)

Options

Some aspects of wxConfigBase behaviour can be changed during run-time. The first of
them is the expansion of environment variables in the string values read from the config
file: for example, if you have the following in your config file:

e for ny program

config fil
= $HOVE/ dat a

User Dat a

the followi ng syntax is valud only under W ndows
UserData = % ndir %\ dat a. dat

the call to confi g- >Read(" User Dat a") will return something
like"/ horre/ zei t | i n/ dat a" if you're lucky enough to run a Linux system ;-)

Although this feature is very useful, it may be annoying if you read a value which
containts '$' or '%' symbols (% is used for environment variables expansion under
Windows) which are not used for environment variable expansion. In this situation you
may call SetExpandEnvVars(FALSE) just before reading this value and
SetExpandEnvVars(TRUE) just after. Another solution would be to prefix the offending
symbols with a backslash.

The following functions control this option:

IsExpandingEnvVars (p. 173)

168

CHAPTER 5

SetExpandEnvVars (p. 175)
SetRecordDefaults (p. 176)
IsRecordingDefaults (p. 173)

wxConfigBase::wxConfigBase

wxConfigBase(const wxString& appName = wxEmptyString, const wxString&
vendorName = wxEmptyString, const wxString& localFilename = wxEmptyString,
const wxString& globalFilename = wxEmptyString, long style = 0)

This is the default and only constructor of the wxConfigBase class, and derived classes.

Parameters

appName
The application name. If this is empty, the class will normally use
wxApp::GetAppName (p. 23) to set it. The application name is used in the registry
key on Windows, and can be used to deduce the local filename parameter if that is
missing.

vendorName
The vendor name. If this is empty, it is assumed that no vendor name is wanted, if
this is optional for the current config class. The vendor name is appended to the
application name for wxRegConfig.

localFilename
Some config classes require a local filename. If this is not present, but required,
the application name will be used instead.

globalFilename
Some config classes require a global filename. If this is not present, but required,
the application name will be used instead.

style
Can be one of wxCONFIG_USE_LOCAL_FILE and
WXCONFIG_USE_GLOBAL_FILE. The style interpretation depends on the config
class and is ignored by some. For wxFileConfig, these styles determine whether a
local or global config file is created or used. If the flag is present but the parameter
is empty, the parameter will be set to a default. If the parameter is present but the
style flag not, the relevant flag will be added to the style. For wxFileConfig you can
also add wxCONFIG_USE_RELATIVE_PATH by logicaly or'ing it to either of the
_FILE options to tell wxFileConfig to use relative instead of absolute paths.

Remarks

By default, environment variable expansion is on and recording defaults is off.

169

CHAPTER 5

wxConfigBase::~wxConfigBase

~wxConfigBase()

Empty but ensures that dtor of all derived classes is virtual.

wxConfigBase::Create

static wxConfigBase * Create()

Create a new config object: this function will create the "best" implementation of
wxConfig available for the current platform, see comments near the definition of
WXCONFIG_WIN32_NATIVE for details. It returns the created object and also sets it as
the current one.

wxConfigBase::DontCreateOnDemand

void DontCreateOnDemand()
Calling this function will prevent Get() from automatically creating a new config object if

the current one is NULL. It might be useful to call it near the program end to prevent new
config object "accidental” creation.

wxConfigBase::DeleteAll

bool DeleteAll()

Delete the whole underlying object (disk file, registry key, ...). Primarly for use by
desinstallation routine.

wxConfigBase::DeleteEntry

bool DeleteEntry(const wxString& key, bool bDeleteGrouplfEmpty = TRUE)

Deletes the specified entry and the group it belongs to if it was the last key in it and the
second parameter is true.

wxConfigBase::DeleteGroup

bool DeleteGroup(const wxString& key)

Delete the group (with all subgroups)

170

CHAPTER 5

wxConfigBase::Exists

bool Exists(wxString& strName) const

returns TRUE if either a group or an entry with a given name exists

wxConfigBase::Flush

bool Flush(bool bCurrentOnly = FALSE)

permanently writes all changes (otherwise, they're only written from object's destructor)

wxConfigBase::Get

wxConfigBase * Get(bool CreateOnDemand = TRUE)

Get the current config object. If there is no current object andCreateOnDemand is
TRUE, creates one (using Create) unless DontCreateOnDemand was called previously.

wxConfigBase::GetAppName

wxString GetAppName() const

Returns the application name.

wxConfigBase::GetEntryType

enum wxConfigBase::EntryType GetEntryType(const wxString& name) const

Returns the type of the given entry or Unknown if the entry doesn't exist. This function
should be used to decide which version of Read() should be used because some of
wxConfig implementations will complain about type mismatch otherwise: e.g., an attempt
to read a string value from an integer key with wxRegConfig will fail.

The result is an element of enum EntryType:

enum EntryType
{
Unknown,
String,
Bool ean,
I nt eger,
Fl oat

171

CHAPTER 5

wxConfigBase::GetFirstGroup

bool GetFirstGroup(wxString& str, long& index) const

Gets the first group.

wxPython note: The wxPython version of this method returns a 3-tuple consisting of the
continue flag, the value string, and the index for the next call.

wxConfigBase::GetFirstEntry

bool GetFirstEntry(wxString& str, long& index) const

Gets the first entry.

wxPython note: The wxPython version of this method returns a 3-tuple consisting of the
continue flag, the value string, and the index for the next call.

wxConfigBase::GetNextGroup

bool GetNextGroup(wxString& str, long& index) const

Gets the next group.

wxPython note: The wxPython version of this method returns a 3-tuple consisting of the
continue flag, the value string, and the index for the next call.

wxConfigBase::GetNextEntry

bool GetNextEntry(wxString& str, long& index) const

Gets the next entry.

wxPython note: The wxPython version of this method returns a 3-tuple consisting of the
continue flag, the value string, and the index for the next call.

wxConfigBase::GetNumberOfEntries

uint GetNumberOfEntries(bool bRecursive = FALSE) const

wxConfigBase::GetNumberOfGroups

uint GetNumberOfGroups(bool bRecursive = FALSE) const

172

CHAPTER 5

Get number of entries/subgroups in the current group, with or without its subgroups.

wxConfigBase::GetPath

const wxString& GetPath() const

Retrieve the current path (always as absolute path).

wxConfigBase::GetVendorName

wxString GetVendorName() const

Returns the vendor name.

wxConfigBase::HasEntry

bool HasEntry(wxString& strName) const

returns TRUE if the entry by this name exists

wxConfigBase::HasGroup

bool HasGroup(const wxString& strName) const

returns TRUE if the group by this name exists

wxConfigBase::IsExpandingEnvVars

bool IsExpandingEnvVars() const

Returns TRUE if we are expanding environment variables in key values.

wxConfigBase::IsRecordingDefaults

bool IsRecordingDefaults() const

Returns TRUE if we are writing defaults back to the config file.

wxConfigBase::Read

bool Read(const wxString& key, wxString* str) const

173

CHAPTER 5

Read a string from the key, returning TRUE if the value was read. If the key was not
found, str is not changed.

bool Read(const wxString& key, wxString* str, const wxString& defaultVal) const
Read a string from the key. The default value is returned if the key was not found.
Returns TRUE if value was really read, FALSE if the default was used.

wxString Read(const wxString& key, const wxString& defaultVal) const

Another version of Read(), returning the string value directly.

bool Read(const wxString& key, long* I) const

Reads a long value, returning TRUE if the value was found. If the value was not found, |
is not changed.

bool Read(const wxString& key, long* |,long defaultVal) const

Reads a long value, returning TRUE if the value was found. If the value was not found,
defaultVal is used instead.

long Read(const wxString& key, long defaultVal) const

Reads a long value from the key and returns it. defaultVal is returned if the key is not
found.

NB: writing

conf - >Read("key", 0);

won't work because the call is ambiguous: compiler can not choose between twoRead
functions. Instead, write:

conf - >Read(" key", O0l);
bool Read(const wxString& key, double* d) const

Reads a double value, returning TRUE if the value was found. If the value was not
found, d is not changed.

bool Read(const wxString& key, double* d, double defaultVal) const

Reads a double value, returning TRUE if the value was found. If the value was not
found, defaultVal is used instead.

bool Read(const wxString& key, bool* b) const

174

CHAPTER 5

Reads a bool value, returning TRUE if the value was found. If the value was not found, b
is not changed.

bool Read(const wxString& key, bool* d,bool defaultVal) const

Reads a bool value, returning TRUE if the value was found. If the value was not found,
defaultVal is used instead.

wxPython note: In place of a single overloaded method name, wxPython implements
the following methods:

Read(key, default=""") Returns a string.
ReadInt(key, default=0) Returns an int.
ReadFloat(key, default=0.0) Returns a floating point number.

wxConfigBase::RenameEntry

bool RenameEntry(const wxString& oldName, const wxString& newName)
Renames an entry in the current group. The entries names (both the old and the new
one) shouldn't contain backslashes, i.e. only simple names and not arbitrary paths are
accepted by this function.

Returns FALSE if the oldName doesn't exist or if newName already exists.

wxConfigBase::RenameGroup

bool RenameGroup(const wxString& oldName, const wxString& newName)
Renames a subgroup of the current group. The subgroup names (both the old and the
new one) shouldn't contain backslashes, i.e. only simple names and not arbitrary paths
are accepted by this function.

Returns FALSE if the oldName doesn't exist or if newName already exists.

wxConfigBase::Set

wxConfigBase * Set(wxConfigBase *pConfig)

Sets the config object as the current one, returns the pointer to the previous current
object (both the parameter and returned value may be NULL)

wxConfigBase::SetExpandEnvVars

void SetExpandEnvVars (bool bDolt = TRUE)

175

CHAPTER 5

Determine whether we wish to expand environment variables in key values.

wxConfigBase::SetPath

void SetPath(const wxString& strPath)

Set current path: if the first character is /', it is the absolute path, otherwise it is a relative
path. '.." is supported. If the strPath doesn't exist it is created.

wxConfigBase::SetRecordDefaults

void SetRecordDefaults(bool bDolt = TRUE)
Sets whether defaults are written back to the config file.
If on (default is off) all default values are written back to the config file. This allows the

user to see what config options may be changed and is probably useful only for
wxFileConfig.

wxConfigBase::SetUmask

void SetUmask(int mode)

NB: this function is not in the base wxConfigBase class but is only implemented in
wxFileConfig. Moreover, this function is Unix-specific and doesn't do anything on other
platforms.

SetUmask() allows to set the mode to be used for the config file creation. For example,

to create a config file which is not readable by other users (useful if it stores some
sensitive information, such as passwords), you should do Set Unrask(0077) .

wxConfigBase::Write

bool Write(const wxString& key, const wxString& value)

bool Write(const wxString& key, long value)

bool Write(const wxString& key, double value)

bool Write(const wxString& key, bool value)

These functions write the specified value to the config file and return TRUE on success.

wxPython note: In place of a single overloaded method name, wxPython implements
the following methods:

176

CHAPTER 5

Write(key, value) Writes a string.
Writelnt(key, value) Writes an int.
WriteFloat(key, value) Writes a floating point number.

wxControl

This is the base class for a control or 'widget'.

A control is generally a small window which processes user input and/or displays one or
more item of data.

Derived from
wxWindow (p. 1190)
wxEvtHandler (p. 380)
wxObiject (p. 750)
Include files
<wx/control.h>

See also

wxValidator (p. 1172)

wxControl::Command

void Command(wxCommandEvent& event)

Simulates the effect of the user issuing a command to the item. See wxCommandEvent
(p. 153).

wxControl::GetLabel

wxString& GetlLabel()

Returns the control's text.

wxControl::SetLabel

177

CHAPTER 5

void SetLabel(const wxString& label)

Sets the item's text.

wxCountingOutputStream

wxCountingOutputStream is a specialized output stream which does not write any data
anyway, instead it counts how many bytes would get written if this were a normal
stream. This can sometimes be useful or required if some data gets serialized to a
stream or compressed by using stream compression and thus the final size of the
stream cannot be known other than pretending to write the stream. One case where the
resulting size would have to be known is if the data has to be written to a piece of
memory and the memory has to be allocated before writing to it (which is probably
always the case when writing to a memory stream).

Derived from
wxOutputStream (p. 755)wxStreamBase (p. 1003)
Include files

<wx/stream.h>

wxCountingOutputStream::wxCountingOutputStream

wxCountingOutputStream()

Creates a wxCountingOutputStream object.

wxCountingOutputStream::~wxCountingOutputStream

~wxCountingOutputStream()

Destructor.

wxCountingOutputStream::GetSize

size_t GetSize() const

Returns the current size of the stream.

178

CHAPTER 5

wxCriticalSection

A critical section object is used for the same exactly purpose as mutexes (p. 734). The
only difference is that under Windows platform critical sections are only visible inside
one process, while mutexes may be shared between processes, so using critical
sections is slightly more efficient. The terminology is also slightly different: mutex may be
locked (or acquired) and unlocked (or released) while critical section is entered and left
by the program.

Finally, you should try to use wxCriticalSectionLocker (p. 180) class whenever possible
instead of directly using wxCriticalSection for the same reasons wxMutexLocker (p. 737)
is preferrable to wxMutex (p. 734) - please see wxMutex for an example.

Derived from

None.

Include files

<wx/thread.h>

See also

wxThread (p. 1106), wxCondition (p. 161), wxMutexLocker (p. 737), wxCriticalSection (p.
179)

wxCriticalSection::wxCriticalSection

wxCriticalSection()

Default constructor initializes critical section object.

wxCriticalSection::~wxCriticalSection

~wxCriticalSection()

Destructor frees the ressources.

wxCriticalSection::Enter

void Enter()

Enter the critical section (same as locking a mutex). There is no error return for this

179

CHAPTER 5

function. After entering the critical section protecting some global data the thread running
in critical section may safely use/modify it.

wxCriticalSection::Leave

void Leave()

Leave the critical section allowing other threads use the global data protected by it.
There is no error return for this function.

wxCriticalSectionLocker

This is a small helper class to be used with wxCriticalSection (p. 179) objects. A
wxClriticalSectionLocker enters the critical section in the constructor and leaves it in the
destructor making it much more difficult to forget to leave a critical section (which, in
general, will lead to serious and difficult to debug problems).

Example of using it:

voi d Set Foo()

{
/1 gs_critSect is some (global) critical section guarding access to
t he
/1 object "foo"
wxCritical Secti onLocker | ocker(gs critSect);
if (...)
{ _
/1 do sonething
return;
}
/1 do sonething el se
return;
}

Without wxCriticalSectionLocker, you would need to remember to manually leave the
critical section before each r et ur n.

Derived from
None.

Include files

180

CHAPTER 5

<wx/thread.h>
See also

wxCriticalSection (p. 179), wxMutexLocker (p. 737)

wxCriticalSectionLocker::wxCriticalSectionLocker

wxCriticalSectionLocker(wxCriticalSection& criticalsection)

Constructs a wxCriticalSectionLocker object associated with givencriticalsection and
enters it.

wxCriticalSectionLocker::~wxCriticalSectionLocker

~wxCriticalSectionLocker()

Destuctor leaves the critical section.

wxCSConv

This class converts between any character sets and Unicode. It has one predefined
instance, wxConvLocal, for the default user character set.

Derived from
wxMBConv (p. 665)
Include files
<wx/strconv.h>
See also

wxMBConv (p. 665), wxEncodingConverter (p. 373), wxMBConv classes overview (p.
1349)

wxCSConv::wxCSConv

181

CHAPTER 5

wxCSConv(const wxChar* charset)

Constructor. Specify the name of the character set you want to convert from/to.

wxCSConv::~wxCSConv

~wxCSConv()

Destructor.

wxCSConv::LoadNow

void LoadNow()

If the conversion tables needs to be loaded from disk, this method will do so. Otherwise,
they will be loaded when any of the conversion methods are called.

wxCSConv::MB2WC

size_t MB2WC(wchar_t* buf, const char* psz, size_t n) const

Converts from the selected character set to Unicode. Returns the size of the destination
buffer.

wxCSConv::WC2MB

size_t WC2MB(char* buf, const wchar_t* psz, size_t n) const

Converts from Unicode to the selected character set. Returns the size of the destination
buffer.

wxCustomDataObject

wxCustomDataObiject is a specialization of wxDataObjectSimple (p. 202) for some
application-specific data in arbitrary (either custom or one of the standard ones). The
only restriction is that it is supposed that this data can be copied bitwise (i.e. with
mencpy()), so it would be a bad idea to make it contain a C++ object (though C struct is
fine).

By default, wxCustomDataObiject stores the data inside in a buffer. To put the data into
the buffer you may use either SetData (p. 184) or TakeData (p. 184) depending on
whether you want the object to make a copy of data or not.

182

CHAPTER 5

If you already store the data in another place, it may be more convenient and efficient to
provide the data on-demand which is possible too if you override the virtual functions
mentioned below.

Virtual functions to override

This class may be used as is, but if you don't want store the data inside the object but
provide it on demand instead, you should override GetSize (p. 184), GetData (p. 184)
and SetData (p. 184) (or may be only the first two or only the last one if you only allow
reading/writing the data)

Derived from

wxDataObjectSimple (p. 202)
wxDataObject (p. 197)

Include files
<wx/dataobj.h>
See also

wxDataObject (p. 197)

wxCustomDataObiject::wxCustombDataObject

wxCustomDataObject(const wxDataFormat& format = wxFormatinvalid)

The constructor accepts a format argument which specifies the (single) format supported
by this object. If it isn't set here, SetFormat (p. 203) should be used.

wxCustomDataObiject::~wxCustomDataObject

~wxCustomDataObiject()

The destructor will free the data hold by the object. Notice that although it calls a virtual
Free() (p. 184) function, the base class version will always be called (C++ doesn't allow
calling virtual functions from constructors or destructors), so if you override Fr ee(), you
should override the destructor in your class as well (which would probably just call the
derived class' version of Free()).

wxCustomDataObject::Alloc

virtual void * Alloc(size_t size)

183

CHAPTER 5

This function is called to allocate size bytes of memory from SetData(). The default
version just uses the operator new.

wxCustomDataObject::Free

wxPython note: This method expects a string in wxPython. You can pass nearly any
object by pickling it first.

virtual void Free()
This function is called when the data is freed, you may override it to anything you want

(or may be nothing at all). The default version calls operator delete[] on the data.

wxCustomDataObiject::GetSize

virtual size_t GetSize() const

Returns the data size in bytes.

wxCustombDataObject::GetData

virtual void * GetData() const

Returns a pointer to the data.

wxCustomDataObject::SetData

virtual void SetData(size_t size, const void *data)

Set the data. The data object will make an internal copy.

wxCustomDataObiject::TakeData

virtual void TakeData(size_t size, const void *data)

Like SetData (p. 184), but doesn't copy the data - instead the object takes ownership of
the pointer.

wxCursor

184

CHAPTER 5

A cursor is a small bitmap usually used for denoting where the mouse pointer is, with a
picture that might indicate the interpretation of a mouse click. As with icons, cursors in X
and MS Windows are created in a different manner. Therefore, separate cursors will be
created for the different environments. Platform-specific methods for creating a
wxCursor object are catered for, and this is an occasion where conditional compilation
will probably be required (see wxlcon (p. 562) for an example).

A single cursor object may be used in many windows (any subwindow type). The
wxWindows convention is to set the cursor for a window, as in X, rather than to set it
globally as in MS Windows, although a global ::wxSetCursor (p. 1268) is also available
for MS Windows use.

Derived from

wxBitmap (p. 54)

wxGDIObject (p. 477)

wxObiject (p. 750)

Include files

<wx/cursor.h>

Predefined objects

Objects:

wxNullCursor

Pointers:

WXSTANDARD_CURSOR

WXHOURGLASS_CURSOR

wWXCROSS_CURSOR

See also

wxBitmap (p. 54), wxlcon (p. 562), wxWindow::SetCursor (p. 1229), ::wxSetCursor (p.
1268)

wxCursor::wxCursor

wxCursor()
Default constructor.

wxCursor(const char bits[], int width, int height, int hotSpotX=-1, int hotSpotY=-1,
const char maskBits[]=NULL)

185

CHAPTER 5

Constructs a cursor by passing an array of bits (Motif and Xt only). maskBits is used only
under Motif.

If either hotSpotX or hotSpotY is -1, the hotspot will be the centre of the cursor image
(Motif only).

wxCursor(const wxString& cursorName, long type, int hotSpotX=0, int hotSpotY=0)
Constructs a cursor by passing a string resource name or filename.

hotSpotX and hotSpotY are currently only used under Windows when loading from an
icon file, to specify the cursor hotspot relative to the top left of the image.

wxCursor(int cursorld)

Constructs a cursor using a cursor identifier.

wxCursor(const wxCursoré& cursor)

Copy constructor. This uses reference counting so is a cheap operation.
Parameters

bits
An array of bits.

maskBits
Bits for a mask bitmap.

width
Cursor width.

height
Cursor height.

hotSpotX
Hotspot x coordinate.

hotSpotY
Hotspot y coordinate.

type
Icon type to load. Under Motif, type defaults to wxBITMAP_TYPE_XBM. Under
Windows, it defaults to wxBITMAP_TYPE_CUR_RESOURCE.
Under X, the permitted cursor types are:

WXBITMAP_TYPE_XBM Load an X bitmap file.

Under Windows, the permitted types are:

186

CHAPTER 5

WxBITMAP_TYPE_CUR

Load a cursor from a .cur cursor file (only if
USE_RESOURCE_LOADING_IN_MSW is
enabled in setup.h).

WxBITMAP_TYPE_CUR_RESOURCE Load a Windows resource (as

WxBITMAP_TYPE_ICO

cursorld

specified in the .rc file).

Load a cursor from a .ico icon file (only if
USE_RESOURCE_LOADING_IN_MSW is
enabled in setup.h). Specify hotSpotX and
hotSpotY.

A stock cursor identifier. May be one of:

WXCURSOR_ARROW
WXCURSOR_BULLSEYE
WXCURSOR_CHAR
WXCURSOR_CROSS
WXCURSOR_HAND
WXCURSOR_IBEAM
WXCURSOR_LEFT_BUTTON

WXCURSOR_MAGNIFIER
wWXCURSOR_MIDDLE_BUTTON

WXCURSOR_NO_ENTRY
WXCURSOR_PAINT_BRUSH
WXCURSOR_PENCIL
WXCURSOR_POINT_LEFT
WXCURSOR_POINT_RIGHT

A standard arrow cursor.

Bullseye cursor.

Rectangular character cursor.

A cross cursor.

A hand cursor.

An |-beam cursor (vertical line).
Represents a mouse with the left button
depressed.

A magnifier icon.

Represents a mouse with the middle button
depressed.

A no-entry sign cursor.

A paintbrush cursor.

A pencil cursor.

A cursor that points left.

A cursor that points right.

WXCURSOR_QUESTION_ARROW An arrow and question mark.

WXCURSOR_RIGHT_BUTTON

WXCURSOR_SIZENESW
WXCURSOR_SIZENS
WXCURSOR_SIZENWSE
WXCURSOR_SIZEWE
WXCURSOR_SIZING
WXCURSOR_SPRAYCAN
WXCURSOR_WAIT
WXCURSOR_WATCH

Represents a mouse with the right button
depressed.

A sizing cursor pointing NE-SW.

A sizing cursor pointing N-S.

A sizing cursor pointing NW-SE.

A sizing cursor pointing W-E.

A general sizing cursor.

A spraycan cursor.

A wait cursor.

A watch cursor.

Note that not all cursors are available on all platforms.

cursor

Pointer or reference to a cursor to copy.

wxPython note: Constructors supported by wxPython are:

wxCursor(name, flags, hotSpotX=0, hotSpotY=0) Constructs a cursor

187

CHAPTER 5

from a filename
wxStockCursor(id) Constructs a stock cursor

wxCursor::~wxCursor

~wxCursor()
Destroys the cursor. A cursor can be reused for more than one window, and does not

get destroyed when the window is destroyed. wxWindows destroys all cursors on
application exit, although it is best to clean them up explicitly.

wxCursor::0Ok

bool Ok() const

Returns TRUE if cursor data is present.

wxCursor::operator =

wxCursoré& operator =(const wxCursoré& cursor)

Assignment operator, using reference counting. Returns a reference to 'this'.

wxCursor::operator ==

bool operator ==(const wxCursoré& cursor)
Equality operator. Two cursors are equal if they contain pointers to the same underlying

cursor data. It does not compare each attribute, so two independently-created cursors
using the same parameters will fail the test.

wxCursor::operator =

bool operator !=(const wxCursoré& cursor)

Inequality operator. Two cursors are not equal if they contain pointers to different
underlying cursor data. It does not compare each attribute.

wxDatabase

188

CHAPTER 5

Every database object represents an ODBC connection. The connection may be closed
and reopened.

Derived from

wxObiject (p. 750)

Include files

<wx/odbc.h>

See also

wxDatabase overview (p. 1433), wxRecordSet (p. 877)

A much more robust and feature-rich set of ODBC classes is now available and
recommended for use in place of the wxDatabase class.

See details of these classes in: wxDB (p. 244), wxDbTable (p. 268)

wxDatabase::wxDatabase

wxDatabase()

Constructor. The constructor of the first wxDatabase instance of an application initializes
the ODBC manager.

wxDatabase::~wxDatabase

~wxDatabase()
Destructor. Resets and destroys any associated wxRecordSet instances.

The destructor of the last wxDatabase instance will deinitialize the ODBC manager.

wxDatabase::BeginTrans

bool BeginTrans()

Not implemented.

wxDatabase::Cancel

void Cancel()

189

CHAPTER 5

Not implemented.

wxDatabase::CanTransact

bool CanTransact()

Not implemented.

wxDatabase::CanUpdate

bool CanUpdate()

Not implemented.

wxDatabase::Close

bool Close()

Resets the statement handles of any associated wxRecordSet objects, and disconnects
from the current data source.

wxDatabase::CommitTrans

bool CommitTrans()

Commits previous transactions. Not implemented.

wxDatabase::ErrorOccured

bool ErrorOccured()

Returns TRUE if the last action caused an error.

wxDatabase::ErrorSnapshot

void ErrorSnapshot(HSTMT statement = SQL_NULL_HSTMT)

This function will be called whenever an ODBC error occured. It stores the error related
information returned by ODBC. If a statement handle of the concerning ODBC action is
available it should be passed to the function.

190

CHAPTER 5

wxDatabase::GetDatabaseName

wxString GetDatabaseName()

Returns the name of the database associated with the current connection.

wxDatabase::GetDataSource

wxString GetDataSource()

Returns the name of the connected data source.

wxDatabase::GetErrorClass

wxString GetErrorClass()
Returns the error class of the last error. The error class consists of five characters where

the first two characters contain the class and the other three characters contain the
subclass of the ODBC error. See ODBC documentation for further details.

wxDatabase::GetErrorCode

WXRETCODE GetErrorCode()

Returns the error code of the last ODBC function call. This will be one of:

SQL_ERROR General error.

SQL_INVALID_HANDLE An invalid handle was passed to an ODBC function.
SQL_NEED_DATA ODBC expected some data.

SQL_NO_DATA_FOUND No data was found by this ODBC call.

SQL_SUCCESS The call was successful.

SQL_SUCCESS_WITH_INFO The call was successful, but further information can

be obtained from the ODBC manager.

wxDatabase::GetErrorMessage

wxString GetErrorMessage()

Returns the last error message returned by the ODBC manager.

wxDatabase::GetErrorNumber

long GetErrorNumber()

191

CHAPTER 5

Returns the last native error. A native error is an ODBC driver dependent error number.

wxDatabase::GetHDBC

HDBC GetHDBC()

Returns the current ODBC database handle.

wxDatabase::GetHENV

HENV GetHENV()

Returns the ODBC environment handle.

wxDatabase::Getlnfo

bool GetIinfo(long infoType, long *buf)
bool Getinfo(long infoType, const wxString& buf, int bufSize=-1)

Returns requested information. The return value is TRUE if successful, FALSE
otherwise.

infoType is an ODBC identifier specifying the type of information to be returned.

buf is a character or long integer pointer to storage which must be allocated by the
application, and which will contain the information if the function is successful.

bufSize is the size of the character buffer. A value of -1 indicates that the size should be
computed by the GetlInfo function.

wxDatabase::GetPassword

wxString GetPassword()

Returns the password of the current user.

wxDatabase::GetUsername

wxString GetUsername()

Returns the current username.

192

CHAPTER 5

wxDatabase::GetODBCVersionFloat

float GetODBCVersionFloat(bool implementation=TRUE)
Returns the version of ODBC in floating point format, e.g. 2.50.

implementation should be TRUE to get the DLL version, or FALSE to get the version
defined in the sql . h header file.

This function can return the value 0.0 if the header version number is not defined (for
early versions of ODBC).

wxDatabase::GetODBCVersionString

wxString GetODBCVersionString(bool implementation=TRUE)
Returns the version of ODBC in string format, e.g. "02.50".

implementation should be TRUE to get the DLL version, or FALSE to get the version
defined in the sql . h header file.

This function can return the value "00.00" if the header version number is not defined
(for early versions of ODBC).

wxDatabase::InWaitForDataSource

bool InWaitForDataSource()

Not implemented.

wxDatabase::IsOpen

bool IsOpen()

Returns TRUE if a connection is open.

wxDatabase::Open

bool Open(const wxString& datasource, bool exclusive = FALSE, bool readOnly =
TRUE, const wxString& username = "ODBC", const wxString& password = "")

Connect to a data source. datasource contains the name of the ODBC data source. The
parameters exclusive and readOnly are not used.

193

CHAPTER 5

wxDatabase::OnSetOptions

void OnSetOptions(wxRecordSet *recordSet)

Not implemented.

wxDatabase::OnWaitForDataSource

void OnWaitForDataSource(bool stillExecuting)

Not implemented.

wxDatabase::RollbackTrans

bool RollbackTrans()

Sends a rollback to the ODBC driver. Not implemented.

wxDatabase::SetDataSource

void SetDataSource(const wxString& s)

Sets the name of the data source. Not implemented.

wxDatabase::SetLoginTimeout

void SetLoginTimeout(long seconds)

Sets the time to wait for an user login. Not implemented.

wxDatabase::SetPassword

void SetPassword(const wxString& s)

Sets the password of the current user. Not implemented.

wxDatabase::SetSynchronousMode

void SetSynchronousMode(bool synchronous)

Toggles between synchronous and asynchronous mode. Currently only synchronous
mode is supported, so this function has no effect.

194

CHAPTER 5

wxDatabase::SetQueryTimeout

void SetQueryTimeout(long seconds)

Sets the time to wait for a response to a query. Not implemented.

wxDatabase::SetUsername

void SetUsername(const wxString& s)

Sets the name of the current user. Not implemented.

wxDataFormat

A wxDataFormat is an encapsulation of a platform-specific format handle which is used
by the system for the clipboard and drag and drop operations. The applications are
usually only interested in, for example, pasting data from the clipboard only if the data is
in a format the program understands and a data format is something which uniquely
identifies this format.

On the system level, a data format is usually just a number (CLI PFORMATunder
Windows or At omunder X11, for example) and the standard formats are, indeed, just
numbers which can be implicitly converted to wxDataFormat. The standard formats are:

wxDF_INVALID An invalid format - used as default argument for functions
taking a wxDataFormat argument sometimes

wxDF_TEXT Text format (wxString)
wxDF_BITMAP A bitmap (wxBitmap)
wxDF_METAFILE A metafile (wxMetafile, Windows only)
wxDF_FILENAME A list of filenames

As mentioned above, these standard formats may be passed to any function taking
wxDataFormat argument because wxDataFormat has an implicit conversion from them
(or, to be precise from the type wxDat aFor mat : : Nat i veFor mat which is the type
used by the underlying platform for data formats).

Aside the standard formats, the application may also use custom formats which are
identified by their names (strings) and not numeric identifiers. Although internally custom
format must be created (or registered) first, you shouldn't care about it because it is done
automatically the first time the wxDataFormat object corresponding to a given format

195

CHAPTER 5

name is created. The only implication of this is that you should avoid having global
wxDataFormat objects with non-default constructor because their constructors are
executed before the program has time to perform all necessary initialisations and so an
attempt to do clipboard format registration at this time will usually lead to a crash!
Virtual functions to override

None

Derived from

None

See also

Clipboard and drag and drop overview (p. 1429), DnD sample (p. 1329), wxDataObject
(p. 197)

wxDataFormat::wxDataFormat

wxDataFormat(NativeFormat format = wxDF_INVALID)

Constructs a data format object for one of the standard data formats or an empty data
object (use SetType (p. 197) or Setld (p. 197) later in this case)

wxDataFormat::wxDataFormat

wxDataFormat(const wxChar *format)

Constructs a data format object for a custom format identified by its name format.

wxDataFormat::operator ==

bool operator ==(const wxDataFormat& format) const

Returns TRUE if the formats are equal.

wxDataFormat::operator !=

bool operator I=(const wxDataFormat& format) const

Returns TRUE if the formats are different.

196

CHAPTER 5

wxDataFormat::Getld

wxString Getld() const

Returns the name of a custom format (this function will fail for a standard format).

wxDataFormat::GetType

NativeFormat GetType() const

Returns the platform-specific number identifying the format.

wxDataFormat::Setld

void Setld(const wxChar *format)

Sets the format to be the custom format identified by the given name.

wxDataFormat::SetType

void SetType(NativeFormat format)

Sets the format to the given value, which should be one of wxDF_XXX constants.

wxDataObject

A wxDataObiject represents data that can be copied to or from the clipboard, or dragged
and dropped. The important thing about wxDataObject is that this is a 'smart' piece of
data unlike usual 'dumb’ data containers such as memory buffers or files. Being 'smart’
here means that the data object itself should know what data formats it supports and
how to render itself in each of supported formats.

A supported format, incidentally, is exactly the format in which the data can be requested
from a data object or from which the data object may be set. In the general case, an
object may support different formats on 'input’ and ‘output’, i.e. it may be able to render
itself in a given format but not be created from data on this format or vice versa.
wxDataObject defines an enumeration type

enum Di recti on
{
Cet
Set

0x01, /1 format is supported by GetDataHere()
0x02 /1 format is supported by SetData()

b

197

CHAPTER 5

which allows to distinguish between them. See wxDataFormat (p. 195) documentation
for more about formats.

Not surprizingly, being 'smart' comes at a price of added complexity. This is reasonable
for the situations when you really need to support multiple formats, but may be annoying
if you only want to do something simple like cut and paste text.

To provide a solution for both cases, wxWindows has two predefined classes which
derive from wxDataObject: wxDataObjectSimple (p. 202) and wxDataObjectComposite
(p. 201). wxDataObjectSimple (p. 202) is the simplest wxDataObject possible and only
holds data in a single format (such as HTML or text) and wxDataObjectComposite (p.
201) is the simplest way to implement wxDataObject which does support multiple
formats because it achievs this by simply holding several wxDataObjectSimple objects.

So, you have several solutions when you need a wxDataObject class (and you need one
as soon as you want to transfer data via the clipboard or drag and drop):

1. Use one of the built-in classes You may use wxTextDataObject,
wxBitmapDataObject or wxFileDataObject in the simplest
cases when you only need to support one format and your
data is either text, bitmap or list of files.

2. Use wxDataObjectSimple Deriving from wxDataObjectSimple is the simplest
solution for custom data - you will only support one format
and so probably won't be able to communicate with other
programs, but data transfer will work in your program (or
between different copies of it).

3. Use wxDataObjectComposite This is a simple but powerful solution which allows
you to support any number of formats (either standard or
custom if you combine it with the previous solution).

4. Use wxDataObject directly This is the solution for maximal flexibility and
efficiency, but it is also is the most difficult to implement.

Please note that the easiest way to use drag and drop and the clipboard with multiple
formats is by using wxDataObjectComposite, but it is not the most efficient one as each
wxDataObjectSimple would contain the whole data in its respective formats. Now
imagine that you want to paste 200 pages of text in your proprietary format, as well as
Word, RTF, HTML, Unicode and plain text to the clipboard and even today's computers
are in trouble. For this case, you will have to derive from wxDataObject directly and
make it enumerate its formats and provide the data in the requested format on demand.

Note that neither the GTK data transfer mechanisms for the clipboard and drag and
drop, nor the OLE data transfer copy any data until another application actually requests
the data. This is in contrast to the 'feel’ offered to the user of a program who would
normally think that the data resides in the clipboard after having pressed 'Copy’ - in
reality it is only declared to be available.

There are several predefined data object classes derived from wxDataObjectSimple:

198

CHAPTER 5

wxFileDataObject (p. 409), wxTextDataObject (p. 1088) and wxBitmapDataObject (p.
75) which can be used without change.

You may also derive your own data object classes from wxCustomDataObject (p. 182)
for user-defined types. The format of user-defined data is given as mime-type string
literal, such as "application/word" or "image/png". These strings are used as they are
under Unix (so far only GTK) to identify a format and are translated into their Windows
equivalent under Win32 (using the OLE IDataObject for data exchange to and from the
clipboard and for drag and drop). Note that the format string translation under Windows
is not yet finished.

wxPython note: At this time this class is not directly usable from wxPython. Derive a
class from wxPyDataObjectSimple (p. 202) instead.

Virtual functions to override

Each class derived directly from wxDataObject must override and implement all of its
functions which are pure virtual in the base class.

The data objects which only render their data or only set it (i.e. work in only one
direction), should return 0 from GetFormatCount (p. 200).

Derived from

None

Include files

<wx/dataobj.h>

See also

Clipboard and drag and drop overview (p. 1429), DnD sample (p. 1329),
wxFileDataObject (p. 409), wxTextDataObject (p. 1088), wxBitmapDataObject (p. 75),

wxCustomDataObiject (p. 182), wxDropTarget (p. 370), wxDropSource (p. 368),
wxTextDropTarget (p. 1096), wxFileDropTarget (p. 414)

wxDataObject::wxDataObject

wxDataObiject()

Constructor.

wxDataObject::~wxDataObject

~wxDataObiject()

199

CHAPTER 5

Destructor.

wxDataObject::GetAllFormats

virtual void GetAllFormats(wxDataFormat *formats, Direction dir = Get) const

Copy all supported formats in the given direction to the array pointed to by formats.
There is enough space for GetFormatCount(dir) formats in it.

wxDataObject::GetDataHere

virtual bool GetDataHere(const wxDataFormat& format, void *buf) const

The method will write the data of the format format in the buffer buf and return TRUE on
success, FALSE on failure.

wxDataObject::GetDataSize

virtual size_t GetDataSize(const wxDataFormat& format) const

Returns the data size of the given format format.

wxDataObject::GetFormatCount

virtual size_t GetFormatCount(Direction dir = Get) const

Returns the number of available formats for rendering or setting the data.

wxDataObject::GetPreferredFormat

virtual wxDataFormat GetPreferredFormat(Direction dir = Get) const

Returns the preferred format for either rendering the data (if dir is Get , its default value)
or for setting it. Usually this will be the native format of the wxDataObject.

wxDataObject::SetData

virtual bool SetData(const wxDataFormat& format, size_t len, const void *buf)
Set the data in the format format of the length len provided in the buffer buf.

Returns TRUE on success, FALSE on failure.

200

CHAPTER 5

wxDataObjectComposite

wxDataObjectComposite is the simplest wxDataObject (p. 197) derivation which may be
sued to support multiple formats. It contains several wxDataObjectSimple (p. 202)
objects and supports any format supported by at least one of them. Only one of these
data objects ispreferred (the first one if not explicitly changed by using the second
parameter of Add (p. 201)) and its format determines the preferred format of the
composite data object as well.

See wxDataObject (p. 197) documentation for the reasons why you might prefer to use
wxDataObject directly instead of wxDataObjectComposite for efficiency reasons.

Virtual functions to override

None, this class should be used directly.

Derived from

wxDataObject (p. 197)

Include files

<wx/dataobj.h>

See also

Clipboard and drag and drop overview (p. 1429), wxDataObject (p. 197),

wxDataObjectSimple (p. 202), wxFileDataObject (p. 409), wxTextDataObject (p. 1088),
wxBitmapDataObject (p. 75)

wxDataObjectComposite::wxDataObjectComposite

wxDataObjectComposite()

The default constructor.

wxDataObjectComposite::Add

void Add(wxDataObjectSimple *dataObject, bool preferred = FALSE)

Adds the dataObiject to the list of supported objects and it becomes the preferred object
if preferred is TRUE.

201

CHAPTER 5

wxDataObjectSimple

This is the simplest possible implementation of the wxDataObiject (p. 197) class. The
data object of (a class derived from) this class only supports one format, so the number
of virtual functions to be implemented is reduced.

Notice that this is still an abstract base class and cannot be used but should be derived
from.

wxPython note: If you wish to create a derived wxDataObjectSimple class in wxPython
you should derive the class from wxPyDataObjectSimple in order to get Python-aware
capabilities for the various virtual methods.

Virtual functions to override

The objects supporting rendering the data must override GetDataSize (p. 203) and
GetDataHere (p. 203) while the objects which may be set must override SetData (p.
203). Of course, the objects supporting both operations must override all threee
methods.

Derived from

wxDataObject (p. 197)

Include files

<wx/dataobj.h>

See also

Clipboard and drag and drop overview (p. 1429), DnD sample (p. 1329),
wxFileDataObject (p. 409), wxTextDataObject (p. 1088), wxBitmapDataObject (p. 75)

wxDataObjectSimple::wxDataObjectSimple

wxDataObjectSimple(const wxDataFormat& format = wxFormatinvalid)

Constructor accepts the supported format (none by default) which may also be set later
with SetFormat (p. 203).

wxDataObjectSimple::GetFormat

202

CHAPTER 5

const wxDataFormat& GetFormat() const

Returns the (one and only one) format supported by this object. It is supposed that the
format is supported in both directions.

wxDataObjectSimple::SetFormat

void SetFormat(const wxDataFormat& format)

Sets the supported format.

wxDataObjectSimple::GetDataSize

virtual size_t GetDataSize() const

Gets the size of our data. Must be implemented in the derived class if the object
supports rendering its data.

wxDataObjectSimple::GetDataHere

virtual bool GetDataHere(void *buf) const

Copy the data to the buffer, return TRUE on success. Must be implemented in the
derived class if the object supports rendering its data.

wxPython note: When implementing this method in wxPython, no additional parameters
are required and the data should be returned from the method as a string.

wxDataObjectSimple::SetData

virtual bool SetData(size_t len, const void *buf)

Copy the data from the buffer, return TRUE on success. Must be implemented in the
derived class if the object supports setting its data.

wxPython note: When implementing this method in wxPython, the data comes as a
single string parameter rather than the two shown here.

wxDatalnputStream

This class provides functions that read binary data types in a portable way. Data can be
read in either big-endian or litte-endian format, little-endian being the default on all

203

CHAPTER 5

architectures.

If you want to read data from text files (or streams) use wxTextlnputStream (p. 1090)
instead.

The >> operator is overloaded and you can use this class like a standard C++ iostream.
Note, however, that the arguments are the fixed size types wxUint32, wxInt32 etc and on
a typical 32-bit computer, none of these match to the "long" type (wxInt32 is defined as
signed int on 32-bit architectures) so that you cannot use long. To avoid problems (here
and elsewhere), make use of the wxInt32, wxUint32, etc types.

For example:

wWxFi | el nput Stream i nput("nytext.dat");
wxDat al nput Stream store(input);

wxUint8 i1;

float f2;

wxString |ine;

store >> il; /1 read a 8 bit integer.

store >> il >> f2; // read a 8 bit integer followed by float.
store >> |ine; /1 read a text line

See also wxDataOutputStream (p. 205).
Derived from

None

Include files

<wx/datstrm.h>

wxDatalnputStream::wxDatalnputStream

wxDatalnputStream(wxInputStream& stream)

Constructs a datastream object from an input stream. Only read methods will be
available.

Parameters
stream

The input stream.

wxDatalnputStream::~wxDatalnputStream

204

CHAPTER 5

~wxDatalnputStream()

Destroys the wxDatalnputStream object.

wxDatalnputStream::BigEndianOrdered

void BigEndianOrdered(bool be_order)

If be_order is TRUE, all data will be read in big-endian order, such as written by
programs on a big endian architecture (e.g. Sparc) or written by Java-Streams (which
always use big-endian order).

wxDatalnputStream::Read8

wxUint8 Read8()

Reads a single byte from the stream.

wxDatalnputStream::Read16

wxUintl6 Read16()

Reads a 16 bit integer from the stream.

wxDatalnputStream::Read32

wxUint32 Read32()

Reads a 32 bit integer from the stream.

wxDatalnputStream::ReadDouble

double ReadDouble()

Reads a double (IEEE encoded) from the stream.

wxDatalnputStream::ReadString

wxString ReadString()

Reads a string from a stream. Actually, this function first reads a long integer specifying
the length of the string (without the last null character) and then reads the string.

wxDataOutputStream

205

CHAPTER 5

This class provides functions that write binary data types in a portable way. Data can be
written in either big-endian or litte-endian format, little-endian being the default on all
architectures.

If you want to write data to text files (or streams) use wxTextOutputStream (p. 1092)
instead.

The << operator is overloaded and you can use this class like a standard C++ iostream.
See wxDatalnputStream (p. 203) for its usage and caveats.

See also wxDatalnputStream (p. 203).
Derived from

None

wxDataOutputStream::wxDataOutputStream

wxDataOutputStream(wxOutputStreamé& stream)

Constructs a datastream object from an output stream. Only write methods will be
available.

Parameters
stream

The output stream.

wxDataOutputStream::~wxDataOutputStream

~wxDataOutputStream()

Destroys the wxDataOutputStream object.

wxDataOutputStream::BigEndianOrdered

void BigEndianOrdered(bool be_order)

If be_order is TRUE, all data will be written in big-endian order, e.g. for reading on a
Sparc or from Java-Streams (which always use big-endian order), otherwise data will be
written in little-endian order.

wxDataOutputStream::Write8

void Write8(wxUint8 i8)

206

CHAPTER 5

Writes the single byte i8 to the stream.

wxDataOutputStream::Writel6

void Write16(wxUint16 i16)

Writes the 16 bit integer i16 to the stream.

wxDataOutputStream::Write32

void Write32(wxUint32 i32)

Writes the 32 bit integer i32 to the stream.

wxDataOutputStream::WriteDouble

void WriteDouble(double f)

Writes the double f to the stream using the IEEE format.

wxDataOutputStream::WriteString

void WriteString(const wxString& string)

Writes string to the stream. Actually, this method writes the size of the string before
writing string itself.

wxDate

A class for manipulating dates.

NOTE: this class is retained only for compatibility, and has been replaced by
wxDateTime (p. 215). wxDate may be withdrawn in future versions of wxWindows.

Derived from
wxObiject (p. 750)
Include files

<wx/date.h>

207

CHAPTER 5

See also

wxTime (p. 1113)

wxDate::wxDate

wxDate()

Default constructor.

wxDate(const wxDate& date)

Copy constructor.

wxDate(int month, int day, int year)

Constructor taking month, day and year.

wxDate(long julian)

Constructor taking an integer representing the Julian date. This is the number of days
since 1st January 4713 B.C., so to convert from the number of days since 1st January
1901, construct a date for 1/1/1901, and add the number of days.

wxDate(const wxString& dateString)

Constructor taking a string representing a date. This must be either the string TODAY, or
of the form MM DY YYYY or MVt DD- YYYY. For example:

wxDat e date("11/26/1966");
Parameters

date
Date to copy.

month
Month: a number between 1 and 12.

day
Day: a number between 1 and 31.

year
Year, such as 1995, 2005.

208

CHAPTER 5

wxDate::~wxDate

void ~wxDate()

Destructor.

wxDate::AddMonths

wxDate& AddMonths(int months=1)

Adds the given number of months to the date, returning a reference to 'this'.

wxDate::AddWeeks

wxDate& AddWeeks(int weeks=1)

Adds the given number of weeks to the date, returning a reference to 'this'.

wxDate::AddYears

wxDate& AddYears(int years=1)

Adds the given number of months to the date, returning a reference to 'this'.

wxDate::FormatDate

wxString FormatDate(int type=-1) const

Formats the date according to type if not -1, or according to the current display type if -1.

Parameters
type
-1 or one of:
wxDAY Format day only.
WXMONTH Format month only.
wxMDY Format MONTH, DAY, YEAR.
wxFULL Format day, month and year in US style:
DAYOFWEEK, MONTH, DAY, YEAR.
WXEUROPEAN Format day, month and year in European style: DAY,
MONTH, YEAR.

wxDate::GetDay

209

CHAPTER 5

int GetDay() const

Returns the numeric day (in the range 1 to 31).

wxDate::GetDayOfWeek

int GetDayOfWeek() const

Returns the integer day of the week (in the range 1 to 7).

wxDate::GetDayOfWeekName

wxString GetDayOfWeekName() const

Returns the name of the day of week.

wxDate::GetDayOfYear

long GetDayOfYear() const

Returns the day of the year (from 1 to 365).

wxDate::GetDaysInMonth

int GetDaysInMonth() const

Returns the number of days in the month (in the range 1 to 31).

wxDate::GetFirstDayOfMonth

int GetFirstDayOfMonth() const

Returns the day of week that is first in the month (in the range 1 to 7).

wxDate::GetJulianDate

long GetJulianDate() const

Returns the Julian date.

wxDate::GetMonth

210

CHAPTER 5

int GetMonth() const

Returns the month number (in the range 1 to 12).

wxDate::GetMonthEnd

wxDate GetMonthEnd()

Returns the date representing the last day of the month.

wxDate::GetMonthName

wxString GetMonthName() const

Returns the name of the month. Do not delete the returned storage.

wxDate::GetMonthStart

wxDate GetMonthStart() const

Returns the date representing the first day of the month.

wxDate::GetWeekOfMonth

int GetWeekOfMonth() const

Returns the week of month (in the range 1 to 6).

wxDate::GetWeekOfYear

int GetWeekOfYear() const

Returns the week of year (in the range 1 to 52).

wxDate::GetYear

int GetYear() const

Returns the year as an integer (such as '1995").

wxDate::GetYearEnd

211

CHAPTER 5

wxDate GetYearEnd() const

Returns the date representing the last day of the year.

wxDate::GetYearStart

wxDate GetYearStart() const

Returns the date representing the first day of the year.

wxDate::IsLeapYear

bool IsLeapYear() const

Returns TRUE if the year of this date is a leap year.

wxDate::Set

wxDate& Set()

Sets the date to current system date, returning a reference to 'this'.
wxDate& Set(long julian)

Sets the date to the given Julian date, returning a reference to 'this'.
wxDate& Set(int month, int day, int year)

Sets the date to the given date, returning a reference to 'this'.
month is a number from 1 to 12.

day is a number from 1 to 31.

year is a year, such as 1995, 2005.

wxDate::SetFormat

void SetFormat(int format)
Sets the current format type.
Parameters

format

212

CHAPTER 5

-1 or one of:

WxDAY Format day only.

WXMONTH Format month only.

wxMDY Format MONTH, DAY, YEAR.

wxFULL Format day, month and year in US style:
DAYOFWEEK, MONTH, DAY, YEAR.

WXEUROPEAN Format day, month and year in European style: DAY,
MONTH, YEAR.

wxDate::SetOption

int SetOption(int option, const bool enable=TRUE)
Enables or disables an option for formatting.
Parameters

option
May be one of:

wWxXNO_CENTURY The century is not formatted.

WXDATE_ABBR Month and day names are abbreviated to 3
characters when formatting.

wxDate::operator wxString

operator wxString()

Conversion operator, to convert wxDate to wxString by calling FormatDate.

wxDate::operator +

wxDate operator +(long i)
wxDate operator +(int i)

Adds an integer number of days to the date, returning a date.

wxDate::operator -

wxDate operator -(long i)

wxDate operator -(int i)

213

CHAPTER 5

Subtracts an integer number of days from the date, returning a date.
long operator -(const wxDate& date)

Subtracts one date from another, return the number of intervening days.

wxDate::operator +=

wxDate& operator +=(long i)

Postfix operator: adds an integer number of days to the date, returning a reference to
'this' date.

wxDate::operator -=

wxDate& operator -=(long i)

Postfix operator: subtracts an integer number of days from the date, returning a
reference to 'this' date.

wxDate::operator ++

wxDate& operator ++()

Increments the date (postfix or prefix).

wxDate::operator --

wxDate& operator --()

Decrements the date (postfix or prefix).

wxDate::operator <

friend bool operator <(const wxDate& datel, const wxDate& date?2)

Function to compare two dates, returning TRUE if datel is earlier than date2.

wxDate::operator <=

friend bool operator <=(const wxDate& datel, const wxDate& date2)

214

CHAPTER 5

Function to compare two dates, returning TRUE if datel is earlier than or equal to date?2.

wxDate::operator >

friend bool operator >(const wxDate& datel, const wxDate& date?2)

Function to compare two dates, returning TRUE if datel is later than date2.

wxDate::operator >=

friend bool operator >=(const wxDate& datel, const wxDate& date2)

Function to compare two dates, returning TRUE if datel is later than or equal to date2.

wxDate::operator ==

friend bool operator ==(const wxDate& datel, const wxDate& date2)

Function to compare two dates, returning TRUE if datel is equal to date2.

wxDate::operator !=

friend bool operator !'=(const wxDate& datel, const wxDate& date?2)

Function to compare two dates, returning TRUE if datel is not equal to date2.

wxDate::operator <<

friend ostreamé& operator <<(ostream& o0s, const wxDate& date)

Function to output a wxDate to an ostream.

wxDateSpan

The documentation for this section has not yet been written.

wxDateTime

215

CHAPTER 5

wxDateTime class represents an absolute moment in the time.
Types

The type wxDat eTi me_t is typedefed as unsi gned short and is used to contain the
number of years, hours, minutes, seconds and milliseconds.

Constants

Global constant wxDef aul t Dat eTi me and synonym for it wxl nval i dDat eTi e are
defined. This constant will be different from any valid wxDateTime object.

All the following constants are defined inside wxDateTime class (i.e., to refer to them you
should prepend their names with wxDat eTi ne: :).

Time zone symbolic names:

enum TZ

{
// the time in the current tine zone
Local ,

/1 zones from GWI (= Greenwhich Mean Tine): they're guaranteed
to be

/1 consequent nunbers, so witing sonething |ike “~GVI0 +
of fset' is

/1 safe if abs(offset) <= 12

/1 underscore stands for mnus

GVr_12, Gwr_11, Gwr_10, Gwvr_ 9, GVr_8, Gwr 7,

G\ 6, GMI 5, GMI 4, GMI_3, GWvIT_2, GMVI_1,

GVITO0,

GVr1, GvIrz, Gurs, QGvrr4, Gurs, QGMre,

Gur7, Gvrg, Gvr9, GwIrio, Gwrii, Guriz,

/1 Note that GMI12 and GMI_12 are not the sane: there is a
di fference

/1 of exactly one day between them

/1 sone synbolic names for TZ

/1 Europe

WET = GWITO, /1 Western Europe Tine

WEST = QGMI1, /1 Western Europe Sumer
Ti me

CET = @wry, /1 Central Europe Tine

CEST = @Qurz, /1 Central Europe Sumer
Ti me

EET = GWIT2, /1 Eastern Europe Tine

EEST = QGMI3, /1 Eastern Europe Sumer
Ti me

MBK = GMIT3, /1 Moscow Ti e

MSD = GVIT4, /1 Moscow Surmer Tinme

// US and Canada

216

CHAPTER 5

AST = GUT_4, /1 Atlantic Standard Tine

ADT = GMTI_3, /1 Atlantic Daylight Tine

EST = GWI_5, /1 Eastern Standard Time

EDT = GMT_4, /1 Eastern Daylight Saving
Ti me

CST = QVI_6, /1l Central Standard Tine

CDT = GMI_5, /1 Central Daylight Saving
Ti me

MST = GMIT_7, /1 Mountain Standard Ti ne

MDT = GMT_6, /1 NMountain Daylight Saving
Ti me

PST = GVII_8, /1 Pacific Standard Tinme

PDT = GVIT_7, /1 Pacific Daylight Saving
Ti me

HST = GvIr_10, /1 Hawaiian Standard Tine

AKST = GMT_9, /1 Al aska Standard Ti ne

AKDT = GMT_8, /1 Al aska Daylight Saving
Ti me

/1 Australia

A WBT = QVIT8, /1 Western Standard Time

A CST = Gvriz + 1, /1 Central Standard Time
(+9.5)

A EST = GMIio, /1 Eastern Standard Time

A ESST = GVI'11, /1 Eastern Sunmer Tine

/1 Universal Coordinated Tinme = the new and politically correct
name

/1 for GMI

UTC = GVITO

i

Month names: Jan, Feb, Mar, Apr, May, Jun, Jul, Aug, Sep, Oct, Nov, Dec and
Inv_Month for an invalid.month value are the values of wxDat eTi ne: : Mont henum.

Likewise, Sun, Mon, Tue, Wed, Thu, Fri, Sat, and Inv_WeekDay are the values
inwxDat eTi me: : WeekDay enum.

Finally, Inv_Year is defined to be an invalid value for year parameter.

GetMonthName() (p. 225) andGetWeekDayName (p. 225) functions use the followign
flags:

enum NaneFl ags
{
Nare_Ful |
Nane_Abbr

0x01, // return full nane
0x02 /!l return abbrevi ated nane

1
Several functions accept an extra parameter specifying the calendar to use (although
most of them only support now the Gregorian calendar). This parameters is one of the
following values:

enum Cal endar

217

CHAPTER 5

{
Gregorian, [/ calendar currently in use in Western countries
Julian /1 calendar in use since -45 until the 1582 (or
| ater)
i

Date calculatiosn often depend on the country adn wxDateTime allows to set the country
which conventions should be used usingSetCountry (p. 226). It takes one of the
following values as parameter:

enum Country

{
Country_Unknown, // no special information for this country
Country_Default, // set the default country with Set Country()
net hod
/1 or use the default country with any other
Country_West er nEur ope_Start,
Country_ EEC = Country_WesternEurope_Start,
France,
Cer many,
UK,
Count ry_West er nEur ope_End = UK,
Russi a,
USA
i

Differnet parst of the world use different conventions for the week start. In some
countries, the week starts on Sunday, while in others - on Monday. The ISO standard
doesn't address this issue, so we support both conventions in the functions whose result
depends on it (GetWeekOfYear (p. 233) andGetWeekOfMonth (p. 233)).

The desired behvaiour may be specified by giving one of the following constants as
argument to these functions:

enum WeekFl ags

Default First, /1 Sunday_ First for US, Mnday First for the
rest

Monday_Fi r st /1l week starts with a Monday

Sunday_Fi r st /1 week starts with a Sunday

i
Derived from
No base class
Include files
<wx/datetime.h>

See also

218

CHAPTER 5

Date classes overview (p. 1342), wxTimeSpan, wxDateSpan, wxCalendarCtrl (p. 95)

Static functions

For convenience, all static functions are collected here. These functions either set or
return the static variables of wxDateSpan (the country), return the current moment, year,
month or number of days in it, or do some general calendar-related actions.

Please note that although several function accept an extra Calendarparameter, it is
currently ignored as only the Gregorian calendar is supported. Future versions will
support other calendars.

wxPython note: These methods are standalone functions
namedwxDat eTi me_<St at i cMet hodNane> in wxPython.

SetCountry (p. 226)
GetCountry (p. 224)
IsWestEuropeanCountry (p. 226)
GetCurrentYear (p. 224)
ConvertYearToBC (p. 223)
GetCurrentMonth (p. 224)
IsLeapYear (p. 225)
GetCentury (p. 224)
GetNumberOfDays (p. 225)
GetNumberOfDays (p. 225)
GetMonthName (p. 225)
GetWeekDayName (p. 225)
GetAmPmStrings (p. 223)
IsSDSTApplicable (p. 226)
GetBeginDST (p. 223)
GetEndDST (p. 224)

Now (p. 226)

UNow (p. 227)

Today (p. 227)

Constructors, assignment operators and setters

Constructors and various Set () methods are collected here. If you construct a date
object from separate values for day, month and year, you should use IsValid (p. 231)
method to check that the values were correct as constructors can not return an error
code.

wxDateTime() (p. 227)
wxDateTime(time_t) (p. 227)
wxDateTime(struct tm) (p. 227)

219

CHAPTER 5

wxDateTime(double jdn) (p. 228)

wxDateTime(h, m, s, ms) (p. 228)

wxDateTime(day, mon, year, h, m, s, ms) (p. 228)

SetToCurrent (p. 228)

Set(time_t) (p. 228)

Set(struct tm) (p. 229)

Set(double jdn) (p. 229)

Set(h, m, s, ms) (p. 229)

Set(day, mon, year, h, m, s, ms) (p. 229)

ResetTime (p. 229)

SetYear (p. 230)

SetMonth (p. 230)

SetDay (p. 229)

SetHour (p. 230)

SetMinute (p. 230)

SetSecond (p. 230)

SetMillisecond (p. 230)

operator=(time_t) (p. 231)

operator=(struct tm) (p. 231)
Accessors

Here are the trivial accessors. Other functions, which might have to perform some more
complicated calculations to find the answer are underCalendar calculations (p. 222)
section.

IsValid (p. 231)

GetTicks (p. 231)
GetYear (p. 231)
GetMonth (p. 231)
GetDay (p. 232)
GetWeekDay (p. 232)
GetHour (p. 232)
GeTMinute (p. 232)
GetSecond (p. 232)
GetMillisecond (p. 232)
GetDayOfYear (p. 232)
GetWeekOfYear (p. 233)
GetWeekOfMonth (p. 233)
GetYearDay (p. 241)
IsWorkDay (p. 233)
IsGregorianDate (p. 233)

Date comparison

There are several function to allow date comparison. To supplement them, a few global
operators >, < etc taking wxDateTime are defined.

IsEqualTo (p. 233)
IsEarlierThan (p. 234)

220

CHAPTER 5

IsLaterThan (p. 234)
IsStrictlyBetween (p. 234)
IsBetween (p. 234)
IsSameDate (p. 234)
IsSameTime (p. 234)
IsEqualUpTo (p. 235)

Date arithmetics

These functions carry out arithmetics (p. 1344) on the wxDateTime objects. As explained
in the overview, either wxTimeSpan or wxDateSpan may be added to wxDateTime,
hence all functions are overloaded to accept both arguments.

Also, both Add() and Subt r act () have both const and non-const version. The first
one returns a new obejct which represents the sum/difference of the original one with the
argument while the second form modifies the object to which it is applied. The operators
-= and += are defined to be equivalent to the second forms of these functions.

Add(wxTimeSpan) (p. 235)
Add(wxDateSpan) (p. 235)
Subtract(wxTimeSpan) (p. 235)
Subtract(wxDateSpan) (p. 236)
Subtract(wxDateTime) (p. 236)
oparator+=(wxTimeSpan) (p. 235)
oparator+=(wxDateSpan) (p. 235)
oparator-=(wxTimeSpan) (p. 235)
oparator-=(wxDateSpan) (p. 236)

Parsing and formatting dates

These functions perform convert wxDateTime obejcts to and from text. The conversions
to text are mostly trivial: you can either do it using the default date and time
representations for the current locale (FormatDate (p. 238) andFormatTime (p. 238)),
using the international standard representation defined by ISO 8601 (FormatlISODate (p.
238) andFormatlSOTime (p. 238)) or by specifying any format at all and using Format (p.
238) directly.

The conversions from text are more interesting, as there are much more possibilities to
care about. The simples cases can be taken care of withParseFormat (p. 236) which can
parse any date in the given (rigid) format. ParseRfc822Date (p. 236) is another function
for parsing dates in predefined format - the one of RFC 822 which (still...) defines the
format of email messages on the Internet. This format can not be described with

strpti me(3) -like format strings used byFormat (p. 238), hence the need for a
separate function.

But the most interesting functions areParseDateTime (p. 237) andParseDate (p. 237)
andParseTime (p. 237). They try to parse the date ans time (or only one of them) in 'free’
format, i.e. allow them to be specified in any of possible ways. These functions will

221

CHAPTER 5

usually be used to parse the (interactive) user input which is not bound to be in any
predefined format. As an example, ParseDateTime (p. 237) can parse the strings such
as"tonmorrow',"March first","next Sunday".

ParseRfc822Date (p. 236)
ParseFormat (p. 236)
ParseDateTime (p. 237)
ParseDate (p. 237)
ParseTime (p. 237)
Format (p. 238)
FormatDate (p. 238)
FormatTime (p. 238)
FormatlSODate (p. 238)
FormatlSOTime (p. 238)

Calendar calculations

The functions in this section perform the basic calendar calculations, mostly related to
the week days. They allow to find the given week day in the week with given number
(either in the month or in the year) and so on.

All (non-const) functions in this section don't modify the time part of the wxDateTime -
they only work with the date part of it.

SetToWeekDaylnSameWeek (p. 239)
GetWeekDaylnSameWeek (p. 239)
SetToNextWeekDay (p. 239)
GetNextWeekDay (p. 239)
SetToPrevWeekDay (p. 239)
GetPrevWeekDay (p. 239)
SetToWeekDay (p. 240)
GetWeekDay (p. 240)
SetTolLastWeekDay (p. 240)
GetLastWeekDay (p. 240)
SetToTheWeek (p. 240)

GetWeek (p. 241)
SetToLastMonthDay (p. 241)
GetLastMonthDay (p. 241)
SetToYearDay (p. 241)
GetYearDay (p. 241)

Astronomical/historical functions

Some degree of support for the date units used in astronomy and/or history is provided.
You can construct a wxDateTime object from aJDN (p. 229) and you may also get its
JDN,MJD (p. 242) orRata Die number (p. 242) from it.

wxDateTime(double jdn) (p. 228)

222

CHAPTER 5

Set(double jdn) (p. 229)
GetJulianDayNumber (p. 242)
GetJDN (p. 242)
GetModifiedJulianDayNumber (p. 242)
GetMJD (p. 242)

GetRataDie (p. 242)

Time zone and DST support

Please see the time zone overview (p. 1345) for more information about time zones.
ormally, these functions should be rarely used.

ToTimezone (p. 242)
MakeTimezone (p. 243)
ToGMT (p. 243)
MakeGMT (p. 243)
GetBeginDST (p. 223)
GetEndDST (p. 224)
ISDST (p. 243)

wxDateTime::ConvertYearToBC

static int ConvertYearToBC(int year)

Converts the year in absolute notation (i.e. a number which can be negative, positive or
zero) to the year in BC/AD notation. For the positive years, nothing is done, but the year
0 is year 1 BC and so for other years there is a difference of 1.

This function should be used like this:

wxDateTine dt(...);

int y = dt.CetYear();

printf("The year is %%", wxDateTi nme::ConvertYearToBC(y), vy >0 ?
IIADI : IIBCI);

wxDateTime::GetAmPmStrings

static void GetAmPmStrings(wxString *am, wxString *pm)

Returns the translations of the strings AMand PMused for time formatting for the current
locale. Either of the pointers may be NULL if the corresponding value is not needed.

wxDateTime::GetBeginDST

223

CHAPTER 5

static wxDateTime GetBeginDST(int year = Inv_Year, Country country =
Country_Default)

Get the beginning of DST for the given country in the given year (current one by default).
This function suffers from limitations described inDST overview (p. 1346).

See also

GetEndDST (p. 224)

wxDateTime::GetCountry

static Country GetCountry()

Returns the current default country. The default country is used for DST calculations, for
example.

See also

SetCountry (p. 226)

wxDateTime::GetCurrentYear

static int GetCurrentYear(Calendar cal = Gregorian)

Get the current year in given calendar (only Gregorian is currently supported).

wxDateTime::GetCurrentMonth

static Month GetCurrentMonth(Calendar cal = Gregorian)

Get the current month in given calendar (only Gregorian is currently supported).

wxDateTime::GetCentury

static int GetCentury(int year = Inv_Year)

Get the current century, i.e. first two digits of the year, in given calendar (only Gregorian
is currently supported).

wxDateTime::GetEndDST

static wxDateTime GetEndDST(int year = Inv_Year, Country country =
Country_Default)

224

CHAPTER 5

Returns the end of DST for the given country in the given year (current one by default).
See also

GetBeginDST (p. 223)

wxDateTime::GetMonthName

static wxString GetMonthName(Month month, NameFlags flags = Name_Full)
Gets the full (default) or abbreviated (specify Narme_Abbr name of the given month.
See also

GetWeekDayName (p. 225)

wxDateTime::GetNumberOfDays

static wxDateTime_t GetNumberOfDays(int year, Calendar cal = Gregorian)

static wxDateTime_t GetNumberOfDays(Month month, int year = Inv_Year, Calendar
cal = Gregorian)

Returns the number of days in the given year or in the given month of the year.
The only supported value for cal parameter is currently G- egor i an.

wxPython note: These two methods are named Get Nunber Of Daysl nYear and
Get Nunber O Days| nMont h in wxPython.

wxDateTime::GetWeekDayName

static wxString GetWeekDayName(WeekDay weekday, NameFlags flags =
Name_Full)

Gets the full (default) or abbreviated (specify Narme_Abbr name of the given week day.
See also

GetMonthName (p. 225)

wxDateTime::IsLeapYear

static bool IsLeapYear(int year = Inv_Year, Calendar cal = Gregorian)

225

CHAPTER 5

Returns TRUE if the year is a leap one in the specified calendar.

This functions supports Gregorian and Julian calendars.

wxDateTime::IsWestEuropeanCountry

static bool IsWestEuropeanCountry(Country country = Country_Default)
This function returns TRUE if the specified (or default) country is one of Western

European ones. It is used internally by wxDateTime to determine the DST convention
and date and time formatting rules.

wxDateTime::IsDSTApplicable

static bool IsDSTApplicable(int year = Inv_Year, Country country = Country_Default)

Returns TRUE if DST was usedi n the given year (the current one by default) in the given
country.

wxDateTime::Now

static wxDateTime Now()
Returns the object corresopnding to the current time.
Example:

wxDat eTi ne now = wxDat eTi me: : Now() ;
printf("Current tinme in Paris:\t%\n", now Format("%",
wxDat eTi ne: : CET).c_str());

Note that this function is accurate up to second: wxDateTime::UNow (p. 227) should be
used for better precision (but it is less efficient and might not be availabel on all
platforms).

See also

Today (p. 227)

wxDateTime::SetCountry

static void SetCountry(Country country)

Sets the country to use by default. This setting influences the DST calculations, date
formatting and other things.

226

CHAPTER 5

The possible values for country parameter are enumerated inwxDateTime constants
section (p. 215).

See also

GetCountry (p. 224)

wxDateTime::Today

static wxDateTime Today()

Returns the object corresponding to the midnight of the current day (i.e. the same as
Now() (p. 226), but the time part is set to 0).

See also

Now (p. 226)

wxDateTime::UNow

static wxDateTime UNow()

Returns the object corresopnding to the current time including the milliseconds if a
function to get time with such precision is available on the current platform (supported
under most Unices and Win32).

See also

Now (p. 226)

wxDateTime::wxDateTime

wxDateTime()

Default constructor. Use one of Set () functions to initialize the object later.

wxDateTime::wxDateTime

wxDateTime& wxDateTime(time_t timet)
Same as Set (p. 227).

wxPython note: This constructor is named wxDat eTi meFr onili meT in wxPython.

wxDateTime::wxDateTime

227

CHAPTER 5

wxDateTime& wxDateTime(const struct tm& tm)
Same as Set (p. 227)

wxPython note: Unsupported.

wxDateTime::wxDateTime

wxDateTime& wxDateTime(double jdn)
Same as Set (p. 228)

wxPython note: This constructor is named wxDat eTi meFr omJDN in wxPython.

wxDateTime::wxDateTime

wxDateTime& wxDateTime(wxDateTime_t hour, wxDateTime_t minute = 0,
wxDateTime_t second = 0, wxDateTime_t millisec = 0)

Same as Set (p. 228)

wxPython note: This constructor is named wxDat eTi meFr omHVS in wxPython.

wxDateTime::wxDateTime

wxDateTime& wxDateTime(wxDateTime_t day, Month month = Inv_Month,
wxDateTime_t hour = 0, wxDateTime_t minute = 0, wxDateTime_t second = 0,
wxDateTime_t millisec = 0)

Same as Set (p. 229)

wxPython note: This constructor is named wxDat eTi meFr onDMY in wxPython.

wxDateTime::SetToCurrent

wxDateTime& SetToCurrent()

Sets the date and time of to the current values. Same as assigning the result of Now()
(p. 226) to this object.

wxDateTime::Set

wxDateTime& Set(time_t timet)

228

CHAPTER 5

Constructs the object from timet value holding the number of seconds since Jan 1, 1970.

wxPython note: This method is named Set Ti meT in wxPython.

wxDateTime::Set

wxDateTime& Set(const struct tmé& tm)

Sets the date and tiem from the broken down representation in the standardt mstructure.

wxPython note: Unsupported.

wxDateTime::Set

wxDateTime& Set(double jdn)

Sets the date from the so-called Julian Day Number.

By definition, the Julian Day Number, usually abbreviated as JDN, of a particular instant
is the fractional number of days since 12 hours Universal Coordinated Time

(Greenwhich mean noon) on January 1 of the year -4712 in the Julian proleptic calendar.

wxPython note: This method is named Set JDN in wxPython.

wxDateTime::Set

wxDateTime& Set(wxDateTime_t hour, wxDateTime_t minute = 0, wxDateTime_t
second = 0, wxDateTime_t millisec = 0)

Sets the date to be equal to Today (p. 227) and the time from supplied parameters.

wxPython note: This method is named Set HVS in wxPython.

wxDateTime::Set

wxDateTime& Set(wxDateTime_t day, Month month = Inv_Month, wxDateTime_t
hour = 0, wxDateTime_t minute = 0, wxDateTime_t second = 0, wxDateTime_t millisec
= O)

Sets the date and time from the parameters.

wxDateTime::ResetTime

229

CHAPTER 5

wxDateTime& ResetTime()

Reset time to midnight (00:00:00) without changing the date.

wxDateTime::SetYear

wxDateTime& SetYear(int year)

Sets the year without changing other date components.

wxDateTime::SetMonth

wxDateTime& SetMonth(Month month)

Sets the month without changing other date components.

wxDateTime::SetDay

wxDateTime& SetDay(wxDateTime_t day)

Sets the day without changing other date components.

wxDateTime::SetHour

wxDateTime& SetHour(wxDateTime_t hour)

Sets the hour without changing other date components.

wxDateTime::SetMinute

wxDateTime& SetMinute(wxDateTime_t minute)

Sets the minute without changing other date components.

wxDateTime::SetSecond

wxDateTime& SetSecond(wxDateTime_t second)

Sets the second without changing other date components.

wxDateTime::SetMillisecond

230

CHAPTER 5

wxDateTime& SetMillisecond(wxDateTime_t millisecond)

Sets the millisecond without changing other date components.

wxDateTime::operator=

wxDateTime& operator(time_t timet)

Same as Set (p. 228).

wxDateTime::operator=

wxDateTime& operator(const struct tmé& tm)

Same as Set (p. 229).

wxDateTime::IsValid

bool IsValid() const

Returns TRUE if the object represents a valid time moment.

wxDateTime::GetTm

Tm GetTm(const TimeZone& tz = Local) const

Returns broken down representation of the date and time.

wxDateTime::GetTicks

time_t GetTicks() const

Returns the number of seconds since Jan 1, 1970. An assert failure will occur if the date
is not in the range covered by ti me_t type.

wxDateTime::GetYear

int GetYear(const TimeZone& tz = Local) const

Returns the year in the given timezone (local one by default).

wxDateTime::GetMonth

231

CHAPTER 5

Month GetMonth(const TimeZoneé& tz = Local) const

Returns the month in the given timezone (local one by default).

wxDateTime::GetDay

wxDateTime_t GetDay(const TimeZone& tz = Local) const

Returns the day in the given timezone (local one by default).

wxDateTime::GetWeekDay

WeekDay GetWeekDay(const TimeZone& tz = Local) const

Returns the week day in the given timezone (local one by default).

wxDateTime::GetHour

wxDateTime_t GetHour(const TimeZone& tz = Local) const

Returns the hour in the given timezone (local one by default).

wxDateTime::GetMinute

wxDateTime_t GetMinute(const TimeZoneé& tz = Local) const

Returns the minute in the given timezone (local one by default).

wxDateTime::GetSecond

wxDateTime_t GetSecond(const TimeZone& tz = Local) const

Returns the seconds in the given timezone (local one by default).

wxDateTime::GetMillisecond

wxDateTime_t GetMillisecond(const TimeZoneé& tz = Local) const

Returns the milliseconds in the given timezone (local one by default).

wxDateTime::GetDayOfYear

232

CHAPTER 5

wxDateTime_t GetDayOfYear(const TimeZone& tz = Local) const

Returns the day of the year (in 1...366 range) in the given timezone (local one by
default).

wxDateTime::GetWeekOfYear

wxDateTime_t GetWeekOfYear(WeekFlags flags = Monday_First, const TimeZone&
tz = Local) const

Returns the number of the week of the year this date is in. The first week of the year is,
according to international standards, the one containing Jan 4. The week number is in
1...53 range (52 for non leap years).

The function depends on the week start (p. 215) convention specified by the flags
argument.

wxDateTime::GetWeekOfMonth

wxDateTime_t GetWeekOfMonth(WeekFlags flags = Monday_First, const
TimeZone& tz = Local) const

Returns the ordinal number of the week in the month (in 1...5 range).
As GetWeekOfYear (p. 233), this function supports both conventions for the week start.

See the description of theseweek start (p. 215) conventions.

wxDateTime::IsWorkDay

bool IsWorkDay(Country country = Country_Default) const

Returns TRUE is this day is not a holiday in the given country.

wxDateTime::IsGregorianDate

bool IsGregorianDate(GregorianAdoption country = Gr_Standard) const
Returns TRUE if the given date os later than the date of adoption of the Gregorian

calendar in the given country (and hence the Gregorian calendar calculations make
sense for it).

wxDateTime::IsEqualTo

bool IsEqualTo(const wxDateTime&datetime) const

233

CHAPTER 5

Returns TRUE if the two dates are strictly identical.

wxDateTime::IsEarlierThan

bool IsEarlierThan(const wxDateTime&datetime) const

Returns TRUE if this date precedes the given one.

wxDateTime::IsLaterThan

bool IsLaterThan(const wxDateTime&datetime) const

Returns TRUE if this date is later than the given one.

wxDateTime::IsStrictlyBetween

bool IsStrictlyBetween(const wxDateTime&tl, const wxDateTime&t2) const
Returns TRUE if this date lies strictly between the two others,
See also

IsBetween (p. 234)

wxDateTime::IsBetween

bool IsBetween(const wxDateTime&tl, const wxDateTime&t2) const

Returns TRUE if IsStrictlyBetween (p. 234)is TRUE or if the date is equal to one of the limi
values.

See also

IsStrictlyBetween (p. 234)

wxDateTime::IsSameDate

bool IsSameDate(const wxDateTime&dt) const

Returns TRUE if the date is the same without comparing the time parts.

wxDateTime::IsSameTime

234

CHAPTER 5

bool IsSameTime(const wxDateTime&dt) const

Returns TRUE if the time is the same (although dates may differ).

wxDateTime::IsEqualUpTo

bool IsEqualUpTo(const wxDateTime& dt, const wxTimeSpan& ts) const

Returns TRUE if the date is equal to another one up to the given time interval, i.e. if the
absolute difference between the two dates is less than this interval.

wxDateTime::Add

wxDateTime Add(const wxTimeSpan& diff) const
wxDateTime& Add(const wxTimeSpan& diff)
wxDateTime& operator+=(const wxTimeSpané& diff)
Adds the given time span to this object.

wxPython note: This method is named AddTS in wxPython.

wxDateTime::Subtract

wxDateTime Subtract(const wxTimeSpan& diff) const
wxDateTime& Subtract(const wxTimeSpan& diff)
wxDateTime& operator-=(const wxTimeSpan& diff)
Subtracts the given time span from this object.

wxPython note: This method is named Subt r act TS in wxPython.

wxDateTime::Add

wxDateTime Add(const wxDateSpané& diff) const
wxDateTime& Add(const wxDateSpan& diff)
wxDateTime& operator+=(const wxDateSpan& diff)

Adds the given date span to this object.

235

CHAPTER 5

wxPython note: This method is named AddDS in wxPython.

wxDateTime::Subtract

wxDateTime Subtract(const wxDateSpan& diff) const
wxDateTime& Subtract(const wxDateSpan& diff)
wxDateTime& operator-=(const wxDateSpan& diff)
Subtracts the given date span from this object.

wxPython note: This method is named Subt r act DS in wxPython.

wxDateTime::Subtract

wxTimeSpan Subtract(const wxDateTime& dt) const

Subtracts another date from this one and returns the difference between them as
wxTimeSpan.

wxDateTime::ParseRfc822Date

const wxChar * ParseRfc822Date(const wxChar* date)

Parses the string date looking for a date formatted according to the RFC 822 in it. The
exact description of this format may, of course, be found in the RFC (section 5), but,
briefly, this is the format used in the headers of Internet email messages and one of the
most common strings expressing date in this format may be something like " Sat, 18
Dec 1999 00:48: 30 +0100".

Returns NULL if the conversion failed, otherwise return the pointer to the character
immediately following the part of the string which could be parsed. If the entire string
contains only the date in RFC 822 format, the returned pointer will be pointing to a NUL
character.

This function is intenionally strict, it will return an error for any string which is not RFC

822 compliant. If you need to parse date formatted in more free ways, you should use
ParseDateTime (p. 237) orParseDate (p. 237) instead.

wxDateTime::ParseFormat

const wxChar * ParseFormat(const wxChar *date, const wxChar *format = "%c",
const wxDateTime& dateDef = wxDefaultDate Time)

236

CHAPTER 5

This function parses the string date according to the givenformat. The system
strptime(3) function is used whenever available, but even if it is not, this function is
still implemented (although support for locale-dependent format specificators such as
"og", " U" or" %" may be not perfect). This function does handle the month and
weekday names in the current locale on all platforms, however.

Please the description of ANSI C function st rf ti ne(3) for the syntax of the format
string.

The dateDef parameter is used to fill in the fields which could not be determined from the
format string. For example, if the format is " %d" (the day of the month), the month and
the year are taken from dateDef. If it is not specified, Today (p. 227) is used as the
default date.

Returns NULL if the conversion failed, otherwise return the pointer to the character which
stopped the scan.

wxDateTime::ParseDateTime

const wxChar * ParseDateTime(const wxChar *datetime)

Parses the string datetime containing the date and time in free format. This function tries
as hard as it can to interpret the given string as date and time. Unlike ParseRfc822Date
(p. 236), it will accept anything that may be accepted and will only reject strings which
can not be parsed in any way at all.

Returns NULL if the conversion failed, otherwise return the pointer to the character which
stopped the scan.

wxDateTime::ParseDate

const wxChar * ParseDate(const wxChar *date)

This function is like ParseDateTime (p. 237), but it only allows the date to be specified. It
is thus flexible thenParseDateTime (p. 237), but also has less chances to misinterpret
the user input.

Returns NULL if the conversion failed, otherwise return the pointer to the character which
stopped the scan.

wxDateTime::ParseTime

const wxChar * ParseTime(const wxChar *time)

This functions is like ParseDateTime (p. 237), but only allows the time to be specified in
the input string.

237

CHAPTER 5

Returns NULL if the conversion failed, otherwise return the pointer to the character which
stopped the scan.

wxDateTime::Format

wxString Format(const wxChar *format = "%c", const TimeZone& tz = Local) const

This function does the same as the standard ANSI C strfti ne(3) function. Please
see its description for the meaning of format parameter.

It also accepts a few wxWindows-specific extensions: you can optionally specify the
width of the field to follow using pri nt f (3) -like syntax and the format specificator %
can be used to get the number of milliseconds.

See also

ParseFormat (p. 236)

wxDateTime::FormatDate

wxString FormatDate() const

Identical to calling Format() (p. 238) with " %" argument (which means 'preferred date
representation for the current locale’).

wxDateTime::FormatTime

wxString FormatTime() const

Identical to calling Format() (p. 238) with " 9%X" argument (which means 'preferred time
representation for the current locale’).

wxDateTime::FormatlSODate

wxString FormatlSODate() const

This function returns the date representation in the ISO 8601 format (YYYY-MM-DD).

wxDateTime::FormatlISOTime

wxString FormatlSOTime() const

This function returns the time representation in the ISO 8601 format (HH:MM:SS).

238

CHAPTER 5

wxDateTime::SetToWeekDaylnSameWeek

wxDateTime& SetToWeekDaylnSameWeek(WeekDay weekday)

Adjusts the date so that it will still lie in the same week as before, but its week day will be
the given one.

Returns the reference to the modified object itself.

wxDateTime::GetWeekDaylnSameWeek

wxDateTime GetWeekDaylnSameWeek(WeekDay weekday) const

Returns the copy of this object to whichSetToWeekDaylnSameWeek (p. 239) was
applied.

wxDateTime::SetToNextWeekDay

wxDateTime& SetToNextWeekDay(WeekDay weekday)
Sets the date so that it will be the first weekday following the current date.

Returns the reference to the modified object itself.

wxDateTime::GetNextWeekDay

wxDateTime GetNextWeekDay(WeekDay weekday) const

Returns the copy of this object to whichSetToNextWeekDay (p. 239) was applied.

wxDateTime::SetToPrevWeekDay

wxDateTime& SetToPrevWeekDay(WeekDay weekday)
Sets the date so that it will be the last weekday before the current date.

Returns the reference to the modified object itself.

wxDateTime::GetPrevWeekDay

wxDateTime GetPrevWeekDay(WeekDay weekday) const

Returns the copy of this object to whichSetToPrevWeekDay (p. 239) was applied.

239

CHAPTER 5

wxDateTime::SetToWeekDay

bool SetToWeekDay(WeekDay weekday, int n = 1, Month month = Inv_Month, int
year = Inv_Year)

Sets the date to the n-th weekday in the given month of the given year (the current
month and year are used by default). The parameter nmay be either opsitive (counting
from the beginning of the month) or negative (counting from the end of it).

For example, Set ToWeekDay(2, wxDat eTi ne: : Wed) will set the date to the second
Wednesday in the current month andSet ToWweekDay(-1, wxDat eTi ne: : Sun) -to
the last Sunday in it.

Returns TRUE if the date was modified successfully, FALSEotherwise meaning that the
specified date doesn't exist.

wxDateTime::GetWeekDay

wxDateTime GetWeekDay(WeekDay weekday, int n = 1, Month month = Inv_Month,
int year = Inv_Year) const

Returns the copy of this object to whichSetToWeekDay (p. 240) was applied.

wxDateTime::SetToLastWeekDay

bool SetToLastWeekDay(WeekDay weekday, Month month = Inv_Month, int year =
Inv_Year)

The effect of calling this function is the same as of callingSet ToWeekDay(- 1,
weekday, nonth, year). The date will be set to the lastweekday in the given month
and year (the current ones by default).

Always returns TRUE.

wxDateTime::GetLastWeekDay

wxDateTime GetLastWeekDay(WeekDay weekday, Month month = Inv_Month, int
year = Inv_Year)

Returns the copy of this object to whichSetToLastWeekDay (p. 240) was applied.

wxDateTime::SetToTheWeek

240

CHAPTER 5

bool SetToTheWeek(wxDateTime_t numWeek, WeekDay weekday = Mon)

Set the date to the given weekday in the week with given numbernumWeek. The number
should be in range 1...53 and FALSE will be returned if the specified date doesn't exist.
TRUE is returned if the date was changed successfully.

wxDateTime::GetWeek

wxDateTime GetWeek(wxDateTime_t numWeek, WeekDay weekday = Mon) const

Returns the copy of this object to whichSetToTheWeek (p. 240) was applied.

wxDateTime::SetToLastMonthDay

wxDateTime& SetToLastMonthDay(Month month = Inv_Month, int year = Inv_Year)
Sets the date to the last day in the specified month (the current one by default).

Returns the reference to the modified object itself.

wxDateTime::GetLastMonthDay

wxDateTime GetLastMonthDay(Month month = Inv_Month, int year = Inv_Year)
const

Returns the copy of this object to whichSetToLastMonthDay (p. 241) was applied.

wxDateTime::SetToYearDay

wxDateTime& SetToYearDay(wxDateTime_t yday)

Sets the date to the day number yday in the same year (i.e., unlike the other functions,
this one does not use the current year). The day number should be in the range 1...366
for the leap years and 1...365 for the other ones.

Returns the reference to the modified object itself.

wxDateTime::GetYearDay

wxDateTime GetYearDay(wxDateTime_t yday) const

Returns the copy of this object to whichSetToYearDay (p. 241) was applied.

241

CHAPTER 5

wxDateTime::GetJulianDayNumber

double GetJulianDayNumber() const

Returns the JDN (p. 229) corresponding to this date. Beware of rounding errors!
See also

GetModifiedJulianDayNumber (p. 242)

wxDateTime::GetJDN

double GetJDN() const

Synonym for GetJulianDayNumber (p. 242).

wxDateTime::GetModifiedJulianDayNumber

double GetModifiedJulianDayNumber() const

Returns the Modified Julian Day Number (MJD) which is, by definition, equal to JDN -
2400000.5. The MJDs are simpler to work with as the integral MJDs correspond to
midnights of the dates in the Gregorian calendar and not th noons like JDN. The MJD 0
is Nov 17, 1858.

wxDateTime::GetMJD

double GetMJD() const

Synonym for GetModifiedJulianDayNumber (p. 242).

wxDateTime::GetRataDie

double GetRataDie() const
Return the Rata Die number of this date.

By definition, the Rata Die number is a date specified as the number of days relative to a
base date of December 31 of the year 0. Thus January 1 of the year 1 is Rata Die day 1.

wxDateTime::ToTimezone

wxDateTime ToTimezone(const TimeZone& tz, bool noDST = FALSE) const

242

CHAPTER 5

Transform the date to the given time zone. If noDST is TRUE, no DST adjustments will
be made.

Returns the date in the new time zone.

wxDateTime::MakeTimezone

wxDateTime& MakeTimezone(const TimeZone& tz, bool noDST = FALSE)

Modifies the object in place to represent the date in another time zone. IfnoDST is TRUE,
no DST adjustments will be made.

wxDateTime:: ToGMT

wxDateTime ToGMT(bool noDST = FALSE) const

This is the same as calling ToTimezone (p. 242) with the argument GMTO.

wxDateTime::MakeGMT

wxDateTime& MakeGMT (bool noDST = FALSE)

This is the same as calling MakeTimezone (p. 243) with the argument GMTO.

wxDateTime::IsDST

int IsDST(Country country = Country_Default) const
Returns TRUE if the DST is applied for this date in the given country.
See also

GetBeginDST (p. 223) andGetEndDST (p. 224)

wxDateTimeHolidayAuthority

TODO

wxDateTimeWorkDays

243

CHAPTER 5

TODO

wxDb

A wxDb instance is a connection to an ODBC data source which may be opened,
closed, and re-opened an unlimited number of times. A database connection allows
function to be performed directly on the data source, as well as allowing access to any
tables/views defined in the data source to which the user has sufficient privileges.

Include files

<wx/db.h>

Helper classes and data structures

The following classes and structs are defined in db.cpp/.h for use with the wxDb class.

wxDbColFor (p. 267)
wxDbCollnf (p. 267)
wxDbTablelnf (p. 282)
wxDblInf (p. 267)

Constants

NOTE: In a future release, all ODBC class constants will be prefaced with ‘wx'’

wxDB_ PATH MAX Maxi mum pat h I ength allowed to be passed to
t he ODBC
driver to indicate where the data file is
| ocat ed.

DB_MAX_COLUMN_NAME LEN Maxi mum supported length for the nane of a
col um

DB_MAX_ERRCR _HI STORY Maxi mum nunber of error nmessages retained
in the
gueue before being overwitten by new
errors.

DB MAX ERROR MSG LEN Maxi mum supported [ength of an error
nessage returned
by the ODBC cl asses

DB _MAX STATEMENT LEN Maxi mum supported I ength for a conplete SQ
st at enent
to be passed to the ODBC dri ver

DB_MAX _TABLE_NAME LEN Maxi mum supported length for the nane of a

244

CHAPTER 5

tabl e

DB_MAX WHERE_CLAUSE_LEN Maxi mum supported WHERE cl ause | ength t hat

can be

passed to the CODBC dri ver

DB _TYPE NAME LEN
data type

Enumerated types

enum wxDbSqlLogState
sqlLogOFF, sqlLogON

enum wxDBMS

Maxi mum [engt h of the nane of a columm's

These are the databases currently tested and working with the ODBC classes. A call to
wxDb::Dbms (p. 265) will return one of these enumerated values listed below.

dbms UNI DENTI FI ED,
dbrs ORACLE,

dbrs SYBASE_ASA,
dbrs SYBASE_ASE,
dbmsMS_SQL_SERVER,
dbmsMY_SQL,

dbs POSTGRES,

dbms ACCESS,

dbs DBASE,

dbrs| NFORM X

/1 Adaptive Server

/1 Adaptive Server Anywhere
Enterprise

See the remarks in wxDb::Dbms (p. 265) for exceptions/issues with each of these

database engines.
Public member variables

SWORD wxDb::cbErrorMsg

This member variable is populated as a result of calling wxDb::GetNextError (p.

260). Contains the count of bytes in the wxDb::errorMsg string.

int wxDb::DB_STATUS

The last ODBC error that occurred on this data connection. Possible codes are:

, ERR_GENERAL_WARNI NG

,_ ERR DI SCONNECT_ERROR

,_ ERR_DATA_TRUNCATED
_PRI'V_NOT_REVOKED

I NVALI D_CONN_STR_ATTR
ERRO? I N_ROW

_OPTI ON_VALUE_CHANGED
_NO_ROWS_UPD_OR_DEL

. MULTI _ROWS_UPD_OR_DEL
V\RO\IG NO_OF_PARANS

. DATA_TYPE_ATTR VI OL
_UNABLE_TO_CONNECT

mmMmmmMmMmMmMmmmmmm

EEEEEEEEEREY
EEEEEEEEES

11
11
11
11
11
11
11
11
11
11
11
11

Sql State
Sql State
Sql State
Sql State
Sql State
Sql State
Sql State
Sql State
Sql State
Sql State
Sql State
Sql State

' 01000
' 01002
' 01004
' 01006
' 01S00'
' 01S01'
' 01S02
' 01S03'
' 01S04'
' 07001
' 07006
' 08001

245

CHAPTER 5

R EEREREREREEREREREREERERERERERRERERERERRERERERERRERE R

%%%

888

 CONNECTI ON_I N_USE /1 Sql State = ' 08002
_CONNECTI ON_NOT_OPEN /1 Sql State = ' 08003
' REJECTED_CONNECTI ON /1 Sql State = ' 08004
_ CONN_FAI L_I N_TRANS /1 Sql State = ' 08007
_COVM LI NK_FAI LURE /1 Sql State = ' 08S01'
| NSERT_VALUE_LI ST_M SMATCH /1 Sql State = '21S01'
 DERI VED_TABLE_M SMATCH /1 Sql State = '21S02'
 STRI NG_RI GHT_TRUNC /1 Sql State = ' 22001
 NUVERI C_VALUE_OUT_OF_RNG /1 Sql State = ' 22003
' ERROR_| N_ASS| GNVENT /1 Sql State = ' 22005'
_DATETI ME_FLD_OVERFLOW /1 Sql State = ' 22008
DI VI DE_BY_ZERO /1 Sql State = '22012'
 STR_DATA_LENGTH_M SMATCH /1 Sql State = ' 22026
| NTEGRI TY_CONSTRAI NT_VI OL /1 Sql State = ' 23000'
| NVALI D_CURSOR_STATE /1 Sql State = ' 24000'
| N\VALI D_TRANS_STATE /1 Sql State = ' 25000'
| N\VALI D_AUTH_SPEC /1 Sql State = ' 28000'
| NVALI D_CURSOR_NAME /1 Sql State = ' 34000'
_SYNTAX_ERROR_OR_ACCESS_VI OL /1 Sql State = ' 37000'
 DUPL| CATE_CURSOR _NANE /1 Sql State = ' 30000
_SERI ALI ZATI ON_FAI LURE /1 Sql State = ' 40001’
_SYNTAX_ERROR_OR_ACCESS_VI OL2 /1 Sql State = ' 42000'
_OPERATI ON_ABORTED /1 Sql State = ' 70100'
_UNSUPPORTED_FUNCTI ON /1 Sql State = '1MOL'
' NO_DATA_SOURCE /1 Sql State = '1MO2'
DRI VER_LOAD_ERRCR /1 Sql State = '1MO3'
 SQLALLOCENV_FAI LED /1 Sql State = '|MO4
' SQLALLOCCONNECT _FAI LED /1 Sql State = '|MO5'
_SQLSETCONNECTOPTI ON_FAI LED /1 Sql State = '|MO6'
 NO_DATA_SOURCE_DLG_PROHI B /1 Sql State = ' MO7'
DI ALOG_FAI LED /1 Sql State = '| MOS8
_UNABLE_TO LOAD_TRANSLATI ON DLL /1 Sql State = '|MO9'
' DATA_SOURCE_NAMVE_TOO LONG /1 Sql State = ' M10'
DRI VER_NAME_TOO LONG /1 Sql State = 'IM11'
DRI VER_KEYWORD_SYNTAX_ERROR /1 Sql State = 'IM12'
 TRACE_FI LE_ERROR /1 Sql State = 'IM13'
 TABLE_OR VI EW ALREADY_EXI STS /1 Sql State = ' S0001'
 TABLE_NOT_FOUND /1 Sql State = ' S0002'
| NDEX_ALREADY_EXI STS /1 Sql State = 'S0011'
| NDEX_NOT_FOUND /1 Sql State = ' S0012'
 COLUMN_ALREADY_EXI STS /1 Sql State = ' S0021'
_COLUVN_NOT_FOUND /1 Sql State = ' S0022'
 NO_DEFAULT_FOR_COLUWN /1 Sql State = ' S0023'
_GENERAL_ERROR /1 Sql State = ' S1000'
 MEMORY_ALLOCATI ON_FAI LURE /1 Sql State = ' S1001'
| NVALI D_COLUWMN_NUVBER /1 Sql State = ' S1002'
_PROGRAM TYPE_OUT_OF RANGE /1 Sql State = ' S1003'
 SQL_DATA_TYPE_OUT_OF_RANGE /1 Sql State = ' S1004'
_OPERATI ON_CANCELLED /1 Sql State = ' S1008'
| N\VALI D_ARGUVENT _VALUE /1 Sql State = ' S1009'
_FUNCTI ON_SEQUENCE_ERROR /1 Sql State = ' S1010'
OPERATI ON| NVALI D_AT_TH' S_TI ME /1 Sql State = 'S1011'
| NVALI D_TRANS OPERATI ON_CODE /1 Sql State = ' S1012'
' NO_CURSOR_NAVE_AVAI L /1 Sql State = ' S1015'
| N\VALI D_STR_OR_BUF_LEN /1 Sql State = ' S1090'
' DESCRI PTOR_TYPE_OUT_OF_RANGE /1 Sql State = ' S1091'
_OPTI ON_TYPE_OUT_OF RANGE /1 Sql State = ' S1092'

246

CHAPTER 5

DB_ERR | NVALI D_PARAM NO /I SqlState = ' S1093'
DB_ERR | NVALI D_SCALE_VALUE /Il SqlState = ' S1094'
DB_ERR_FUNCTI ON_TYPE_OUT_OF_RANGE /l SqlState = ' S1095'
DB_ERR | NF_TYPE_OUT_OF RANGE /l SqlState = ' S1096'
DB_ERR_COLUWN_TYPE_OUT_OF RANGE /l SqlState = ' S1097'
DB_ERR_SCOPE_TYPE_OUT_OF RANGE /l SqlState = ' S1098'
DB_ERR NULLABLE_TYPE OUT_OF RANGE /l SqlState = ' S1099'
DB_ERR_UNI QUENESS_OPTI ON_TYPE _OUT_OF RANGE // Sgl State = ' S1100'
DB_ERR ACCURACY OPTI ON TYPE OUT_OF RANGE // Sgl State = ' S1101'
DB_ERR DI RECTI ON_OPTI ON_OUT_OF RANGE /I SqlState = 'S1103'
DB_ERR | NVALI D_PRECI S| ON_VALUE /I SqlState = 'S1104'
DB_ERR | NVALI D_PARAM TYPE /I SqlState = ' S1105'
DB_ERR FETCH TYPE_OUT_OF RANGE /I SqlState = ' S1106'
DB_ERR ROW VALUE_OUT_OF RANGE /I SqlState = 'S1107'
DB_ERR_CONCURRENCY_CPTI ON_OUT_OF RANGE /I SqlState = 'S1108'
DB_ERR | NVALI D_CURSOR _POSI TI ON /I SqlState = ' S1109'
DB_ERR | NVALI D_DRI VER_COVPLETI ON /I SqlState = 'S1110'
DB_ERR | NVALI D_BOOKMARK_VALUE /l SqlState = 'S1111'
DB_ERR DRI VER_NOT_CAPABLE /l SqlState = ' S1000'
DB_ERR _TI MEOUT_EXPI RED /I SqlState = ' S1TOO'

struct wxDb::dbinf
This structure is internal to the wxDb class and contains details of the ODBC
datasource that the current instance of the wxDb is connected to in its members.
When the data source is opened, all of the information contained in the dblinf
structure is queried from the data source. This information is used almost
exclusively within the ODBC class library. Where there is a need for this
information outside of the class library a member function such as
wxDbTable::IsCursorClosedOnCommit() has been added for ease of use.

char dbnmsNane[40] - Nane of the dbns product

char dbnsVer [64] - Version # of the dbns product

char dri ver Nane[40] - Driver nane

char odbcVer [60] - ODBC version of the driver

char dr vigr GdbcVer [60] - ODBC version of the driver manager

char driver Ver[60] - Driver version

char server Nane[80] - Server Nane, typically a connect string
char dat abaseNane[128] - Dat abase fil enane

char out er Joi ns[2] - Does datasource support outer joins

char procedur eSupport[2] - Does datasource support stored
pr ocedur es

UWORD naxConnecti ons - Maxi mum # of connections dat asource
supports

UWORD naxStnts - Maxi num # of HSTMIs per HDBC

UWORD api Conf Lvl - ODBC APl confornmance | eve

UORD cl i Conf Lvl - |Is datasource SAG conpliant

UORD sqgl Conf Lvl - SQL confornance |eve

UWORD cur sor Commi t Behavi or - How cursors are affected on db
conm t

UWORD cursorRol | backBehavi or - How cursors are affected on db
rol | back

UWORD support Not Nul | O ause - Does datasource support NOT NULL
cl ause

char support | EF[2] - Integrity Enhancenent Facility (Ref.
Integrity)

UDWORD t xnl sol ati on - Transaction isolation |evel supported

247

CHAPTER 5

by driver

UDWORD t xnl sol ati onOptions - Transaction isolation |evel options
avai |l abl e

UDWORD f et chDi recti ons - Fetch directions supported

UDWORD | ockTypes - Lock types supported in SQ.Set Pos

UDWORD posOper ati ons - Position operations supported in
SQLSet Pos

UDWORD posStnt s - Position statenents supported

UDWORD scr ol | Concurrency - Scrollabl e cursor concurrency options
support ed

UDWORD scrol | Opti ons - Scroll able cursor options supported

UDWORD staticSensitivity - Can additions/del etions/updates be
det ected

UWORD t xnCapabl e - Indicates if datasource supports

transacti ons
UDWORD | ogi nTi meout
request

Nurmber seconds to wait for a login

char wxDb::errorListiDB_MAX_ERROR_HISTORY][DB_MAX_ERROR_MSG_LEN]
The last n ODBC errors that have occurred on this database connection.

char wxDb::errorMsg[SQL_MAX_MESSAGE_LENGTH]
This member variable is populated as a result of calling wxDb::GetNextError (p.
260). It contains the ODBC error message text.

SDWORD wxDb::nativeError
Set by wxDb::DispAllErrors, wxDb::GetNextError, and wxDb::DispNextError. It
contains the datasource-specific error code returned by the datasource to the
ODBC driver. Used for reporting ODBC errors.

wxChar wxDb::sqlState[20]
Set by wxDb::TranslateSqlState(). Indicates the error state after a failed ODBC
operation. Used for reporting ODBC errors.
Remarks
Default cursor scrolling is defined by wxODBC_FWD_ONLY_CURSORS in setup.h
when the wxWindows library is built. This behavior can be overridden when an instance
of a wxDb is created (see wxDb constructor (p. 249)).

See also

wxDbColFor (p. 267), wxDbColInf (p. 267), wxDbTable (p. 268), wxDbTablelnf (p. 282),
wxDblInf (p. 267)

Associated non-class functions

The following functions are used in conjunction with the wxDb class.

wxDb * wxDbGetConnection(wxDbConnectInf *pDbConfig, bool
FwdOnlyCursors=(bool)wxODBC_FWD_ONLY_CURSORYS)

248

CHAPTER 5

bool wxDbFreeConnection(wxDb *pDb)
void wxDbCloseConnections()
int wxDbConnectionsinUse()

bool wxDbSqglLog(wxDbSglLogState state, const wxChar *filename =
SQL_LOG_FILENAME)

bool wxDbGetDataSource(HENV henv, char *Dsn, SWORD DsnMax, char *DsDesc,
SWORD DsDescMax, UWORD direction = SQL_FETCH_NEXT)

wxDb::wxDb

wxDb()
Default constructor.

wxDb(HENV& aHenv, bool
FwdOnlyCursors=(bool)wxODBC_FWD_ONLY_CURSORS)

Constructor, used to create an ODBC connection to a data source.
Parameters

aHenv
Environment handle used for this connection.

FwdOnlyCursors
Will cursors created for use with this datasource connection only allow forward
scrolling cursors.

Remarks

This is the constructor for the wxDb class. The wxDb object must be created and
opened before any database activity can occur.

Example

wxDbConnect | nf Connect | nf;
....Set values for nenber variables of Connectlnf here

wxDb sanpl eDB(Connect | nf . Henv) ;
i f (!sanpl eDB. Open(Connect | nf.Dsn, Connectlnf. Uid,
Connect I nf. AuthStr))

/1 Error opening data source

249

CHAPTER 5

wxDb::Catalog

bool Catalog(char * userID, char *fleName = SQL_CATALOG_FILENAME)

Allows a data "dictionary" of the data source to be created, dumping pertinent
information about all data tables to which the user specified in userlD has access.

Parameters
userlD
Database user name to use in accessing the database. All tables to which this

user has rights will be evaluated in the catalog.

fileName
OPTIONAL argument. Name of the text file to create and write the DB catalog to.

Return value

Returns TRUE if the catalog request was successful, of FALSE if there was some
reason the catalog could not be generated

Example

TABLE NANME COLUWN NAME DATA TYPE PRECI SI ON LENGTH
EMPLOYEE RECI D (0008) NUMBER 15 8
EMPLOYEE USER I D (0012) VARCHAR2 13 13
EMPLOYEE FULL_NANVE (0012) VARCHAR2 26 26
EMPLOYEE PASSWORD (0012) VARCHAR2 26 26
EMPLOYEE START_DATE (0011) DATE 19 16

wxDb::Close

void Close()

Closes the database connection.

Remarks

At the end of your program, when you have finished all of your database work, you must
close the ODBC connection to the data source. There are actually four steps involved in

doing this as illustrated in the example.

Any wxDbTable instances which use this connection must be deleted before closing the
database connection.

250

CHAPTER 5

Example

/1 Conmmit any open transactions on the data source
sanpl eDB. Conmi t Trans() ;

/1 Delete any renai ni ng wxDbTabl e obj ects allocated with new
del ete parts;

// Cose the wxDb connection when finished with it
sanpl eDB. O ose();

/1 Free Environment Handl e that ODBC uses
i f (SQ.FreeEnv(Db. Henv) != SQ. SUCCESS)
{

/1 Error freeing environnent handle

wxDb::CommitTrans

bool CommitTrans()

Permanently "commits" changes (insertions/deletions/updates) to the database.

Return value

Returns TRUE if the commit was successful, or FALSE if the commit failed.

Remarks

Transactions begin implicitly as soon as you make a change to the database. At any
time thereafter, you can save your work to the database ("Commit") or roll back all of
your changes ("Rollback™). Calling this member function commits all open transactions

on this ODBC connection.

Special Note : Cursors

It is important to understand that different database/ODBC driver combinations handle
transactions differently. One thing in particular that you must pay attention to is cursors,
in regard to transactions. Cursors are what allow you to scroll through records forward
and backward and to manipulate records as you scroll through them. When you issue a
guery, a cursor is created behind the scenes. The cursor keeps track of the query and
keeps track of the current record pointer. After you commit or rollback a transaction, the
cursor may be closed automatically. This means you must requery the data source
before you can perform any additional work against the wxDbTable object. This is only
necessary however if the data source closes the cursor after a commit or rollback. Use
the wxDbTable::IsCursorClosedOnCommit() member function to determine the data
source's transaction behavior. Note, it would be very inefficient to just assume the data
source closes the cursor and always requery. This could put a significant, unnecessary
load on data sources that leave the cursors open after a transaction.

251

CHAPTER 5

wxDb::CreateView

bool CreateView(char * viewName, char * colList, char *pSqlStmt)
Creates a SQL VIEW.
Parameters

viewName
The name of the view. e.g. PARTS_V

colList
OPTIONAL Pass in a comma delimited list of column names if you wish to
explicitly name each column in the result set. If not desired, pass in an empty
string.

pSqlStmt
Pointer to the select statement portion of the CREATE VIEW statement. Must be a
complete, valid SQL SELECT statement.

Remarks

A 'view' is a logical table that derives columns from one or more other tables or views.
Once the view is created, it can be queried exactly like any other table in the database.

NOTE: Views are not available with all datasources. Oracle is one example of a
datasouce which does support views.

Example

/1 1nconplete code sanple
db. Creat eVi em("PARTS SD1", "PN, PD, Qry",
"SELECT PART _NO, PART DESC, QIrY_ON HAND * 1.1 FROM
PARTS \
WHERE STORACE DEVICE = 1");

/1 PARTS SD1 can now be queried just as if it were a data table.
/1 e.g. SELECT PN, PD, QIY FROM PARTS SD1

wxDb::DispAllErrors

bool DispAllErrors(HENV aHenv, HDBC aHdbc = SQL_NULL_HDBC, HSTMT aHstmt
= SQL_NULL_HSTMT)

Logs all database errors that occurred as a result of the last executed database
command. This logging also includes debug logging when compiled in debug mode via
wxLogDebug (p. 1304). If logging is turned on via wxDb::SetSqlLogging (p. 263), then
an entry is also logged to the defined log file.

Parameters

252

CHAPTER 5

aHenv
A handle to the ODBC environment.

aHdbc
A handle to the ODBC connection. Pass this in if the ODBC function call that erred
out required a hdbc or hstmt argument.

AHstmt
A handle to the ODBC statement being executed against. Pass this in if the ODBC
function call that erred out required a hstmt argument.

Remarks
This member function will display all of the ODBC error messages for the last ODBC
function call that was made. Normally used internally within the ODBC class library.
Would be used externally if calling ODBC functions directly (i.e. SQLFreeEnv()).
See also
wxDb::SetSqglLogging (p. 263), wxDbSqlLog
Example

if (SQ.ExecDirect(hstnt, (UCHAR FAR *) pSql Stnt, SQ._NTS) !=
SQL_SUCCESS)

/1 Display all ODBC errors for this stnt
return(db. D spAl | Errors(db. henv, db. hdbc, hstnt));

wxDb::DispNextError

void DispNextError()
Remarks

This function is normally used internally within the ODBC class library. It could be used
externally if calling ODBC functions directly. This function works in conjunction with
wxDb::GetNextError (p. 260) when errors (or sometimes informational messages)
returned from ODBC need to be analyzed rather than simply displaying them as an
error. GetNextError() retrieves the next ODBC error from the ODBC error queue. The
wxDb member variables "sqglState", "nativeError" and "errorMsg" could then be
evaluated. To display the error retrieved, DispNextError() could then be called. The
combination of GetNextError() and DispNextError() can be used to iteratively step
through the errors returned from ODBC evaluating each one in context and displaying
the ones you choose.

Example

/1 Drop the table before attenpting to create it
sprintf(sqgl Stnt, "DROP TABLE %", tabl eNane);

253

CHAPTER 5

/1 Execute the drop tabl e statenent

if (SQ.ExecDirect(hstnt, (UCHAR FAR *)sql Stnt, SQL_NTS) !=
SQ._SUCCESS)

{

/1 Check for sgl State = S0002, "Table or view not found".
/1 lgnore this error, bonb out on any other error.

pDb- >Get Next Er r or (henv, hdbc, hstm);

if (strcnp(pDb->sqgl State, "S0002"))

{

pDb- >Di spNext Error (); /! Displayed error retrieved
pDb->Di spAl | Errors(henv, hdbc, hstnt); // Display all other
errors, if any

pDb- >Rol | backTrans(); /! Rol |l back the transaction
O oseCursor(); /1 Close the cursor
return(FALSE) ; /1 Return Failure

wxDb::DropView

bool DropView(const char *viewName)
Drops the data table view named in 'viewName'.
Parameters

viewName
Name of the view to be dropped.

Remarks
If the view does not exist, this function will return TRUE. Note that views are not

supported with all data sources.

wxDb::ExecSql

bool ExecSql(char *pSqlStmt)

Allows a native SQL command to be executed directly against the datasource. In
addition to being able to run any standard SQL command, use of this function allows a
user to (potentially) utilize features specific to the datasource they are connected to that
may not be available through ODBC. The ODBC driver will pass the specified command
directly to the datasource.

Parameters

pSqlStmt
Pointer to the SQL statement to be executed.

Remarks

254

CHAPTER 5

This member extends the wxDb class and allows you to build and execute ANY VALID
SQL statement against the data source. This allows you to extend the class library by
being able to issue any SQL statement that the data source is capable of processing.
See also

wxDb::GetData (p. 257), wxDb::GetNext (p. 260)

wxDb::FwdOnlyCursors

bool FwdOnlyCursors()

Indicates whether this connection to the datasource only allows forward scrolling cursors
or not. This state is set at connection creation time.

Remarks

In wxWindows v2.4 release, this function will be deprecated to use a renamed version of
the function called wxDb::IsFwdOnlyCursors() to match the normal wxWindows naming
conventions for class member functions.

See also

wxDb::IsFwdOnlyCursors (p. 262), wxDb::wxDb (p. 249), wxDbGetConnection (p. 248)

wxDb::GetCatalog

wxDblInf * GetCatalog(char *userID)

Returns a wxDblnf pointer that points to the catalog(data source) name, schema,
number of tables accessible to the current user, and a wxDbTablelnf pointer to all data
pertaining to all tables in the users catalog.

Parameters

userlD
Owner of the table. Specify a userID when the datasource you are connected to
allows multiple unique tables with the same name to be owned by different users.
userlD is evaluated as follows:

userI D == NULL ... UserID is ignored (DEFAULT)
user|D == "" ... UserID set equal to 'this->uid
useriID!I="" ... UserlD set equal to 'userlD

Remarks

The returned catalog will only contain catalog entries for tables to which the user
specified in 'userID' has sufficient privileges. If no user is specified (NULL passed in), a

255

CHAPTER 5

catalog pertaining to all tables in the datasource accessible via this connection will be
returned.

wxDb::GetColumnCount

int GetColumnCount(char *tableName, const char *userID)
Parameters

tableName
A table name you wish to obtain column information about.

userlD
Name of the user that owns the table(s). Required for some datasources for
situations where there may be multiple tables with the same name in the
datasource, but owned by different users. userID is evaluated in the following

manner:
userI D == NULL ... UserIDis ignored (DEFAULT)
user|D == "" ... UserID set equal to 'this->uid
useriID!I="" ... UserlID set equal to 'userlD

Return value

Returns a count of how many columns are in the specified table. If an error occurs
retrieving the number of columns the function will return a -1.

wxDb::GetColumns

wxDbColInf * GetColumns(char *tableName, int *numCaols, const char
*userlD=NULL)

wxDbColInf * GetColumns(char *tableName[], const char *userID)
Parameters

tableName
A table name you wish to obtain column information about.

numcCols
A pointer to a integer which will hold a count of the number of columns returned by
this function

tableName[]
An array of pointers to table names you wish to obtain column information about.
The last element of this array must be a NULL string.

userlD
Name of the user that owns the table(s). Required for some datasources for
situations where there may be multiple tables with the same name in the
datasource, but owned by different users. userID is evaluated in the following
manner:

256

CHAPTER 5

userI D == NULL ... UserID is ignored (DEFAULT)
user|D == "" ... UserID set equal to 'this->uid
useriID!I="" ... UserID set equal to 'userlD

Return value

This function returns an array of wxDbCollnf structures. This allows you to obtain
information regarding the columns of your table(s). If no columns were found, or an
error occurred, this pointer will be zero (null).

THE CALLING FUNCTION IS RESPONSIBLE FOR DELETING THE wxDbColInf
MEMORY WHEN IT IS FINISHED WITH IT.

ALL column bindings associated with this wxDb instance are unbound by this function.
This function should use its own wxDb instance to avoid undesired unbinding of
columns.

See also
wxDbCollnf (p. 267)
Example
char *tablelList[] = {"PARTS', O0};
wxDbCol I nf *col I nf = pDb->CGet Col utms(t abl eLi st);
if (collnf)
/1 Use the colum inf

/1 Destroy the nmenory
delete [] colInf;

wxDb::GetData

bool GetData(UWORD colNo, SWORD cType, PTR pData, SDWORD maxLen,
SDWORD FAR * cbReturned)

Used to retrieve result set data without binding column values to memory variables (i.e.
not using a wxDbTable instance to access table data).

Parameters

colNo
Ordinal number of column in the result set to be returned.
cType
The C data type that is to be returned.
pData
Memory buffer which will hold the data returned by the call to this function.
maxLen

257

CHAPTER 5

Maximum size of the buffer that will hold the returned value.

cbReturned
Pointer to the buffer containing the length of the actual data returned. If this value
comes back as SQL_NULL_DATA, then the GetData() call has failed.

See also
wxDb::GetNext (p. 260), wxDb::ExecSql (p. 254)
Example

SDWORD ch;
ULONG reqQy;
wxString sql Stnt;
sql Stmt = "SELECT SUM REQUI RED QTY - PICKED QTY) FROM ORDER TABLE
VWHERE \
PART RECI D = 1450 AND REQUI RED QTY > PI CKED QTY";

/1 Performthe query
if (!pDb->ExecSql (sqglStnt.c_str()))

/1 ERROR
return(0);

}

/1 Request the first row of the result set
if (!pDb->GetNext())

/1 ERROR
return(0);

}

Read colum #1 of this row of the result set and store the val ue
in'reqQy’
if (!pDb->CGetData(l, SQL_C ULONG & eqQy, 0, &ch))

/1 ERROR
return(0);

}

// Check for a NULL result
if (cb == SQL_NULL_DATA)
return(0);

Remarks
When requesting multiple columns to be returned from the result set (for example, the

SQL query requested 3 columns be returned), the calls to GetData must request the
columns in ordinal sequence (1,2,3 or 1,3 or 2,3).

wxDb::GetDatabaseName

char * GetDatabaseName()

258

CHAPTER 5

Returns the name of the database engine.

wxDb::GetDataSource

char * GetDataSource()

Returns the ODBC datasource name.

wxDb::GetHDBC

HDBC GetHDBC()

Returns the ODBC handle to the database connection.

wxDb::GetHENV

HENV GetHENV()

Returns the ODBC environment handle.

wxDb::GetHSTMT

HSTMT GetHSTMT()

Returns the ODBC statement handle associated with this database connection.

wxDb::GetKeyFields

int GetKeyFields(char *tableName, wxDbColInf *colInf, intnocols)

Used to determine which columns are members of primary or non-primary indexes on
the specified table. If a column is a member of a foreign key for some other table, that
information is detected also.

This function is primarily for use by the wxDb::GetColumns (p. 256) function, but may be
called if desired from the client application.

Parameters

tableName
Name of the table for which the columns will be evaluated as to their inclusion in
any indexes.

collnf
Data structure containing the column definitions (obtained with wxDb::GetColumns

259

CHAPTER 5

(p. 256)). This function populates the PkCol, PkTableName, and FkTableName
members of the collnf structure.

nocols
Number of columns defined in the instance of colinf.

Return value

Currently always returns TRUE.

See also

wxDbColInf (p. 267), wxDb::GetColumns (p. 256)

wxDb::GetNext

bool GetNext()

Requests the next row in the result set obtained by issueing a query through a direct
request using wxDb::ExecSql().

See also

wxDb::ExecSql (p. 254), wxDb::GetData (p. 257)

wxDb::GetNextError

bool GetNextError(HENV aHenv, HDBC aHdbc = SQL_NULL_HDBC, HSTMT aHstmt
= SQL_NULL_HSTMT)

Parameters

aHenv
A handle to the ODBC environment.

aHdbc
A handle to the ODBC connection. Pass this in if the ODBC function call that erred
out required a hdbc or hstmt argument.

AHstmt
A handle to the ODBC statement being executed against. Pass this in if the ODBC
function call that erred out requires a hstmt argument.

See also
wxDb::DispNextError (p. 253), wxDb::DispAllErrors (p. 252)
Example
if (SQ.ExecDirect(hstnt, (UCHAR FAR *) pSql Stnt, SQ._NTS) !=

SQL_SUCCESS)
{

260

CHAPTER 5

/] Display all ODBC errors for this stnt
return(db. D spAl | Errors(db. henv, db. hdbc, hstnt));

wxDb::GetPassword

char * GetPassword()

Returns the password used to connect to the datasource.

wxDb::GetTableCount

int GetTableCount()

Returns the number of wxDbTable() instances currently using this data source
connection.

wxDb::GetUsername

char * GetUsername()

Returns the user name used to access the datasource.

wxDb::Grant

bool Grant(int privileges, char *tableName, char *userList = "PUBLIC")

Use this member function to GRANT privileges to users for accessing tables in the
datasource.

Parameters

privileges
Use this argument to select which privileges you want to grant. Pass
DB_GRANT_ALL to grant all privileges. To grant individual privileges pass one or
more of the following OR'd together:

DB GRANT SELECT = 1
DB GRANT | NSERT = 2
DB_GRANT _UPDATE = 4
DB _GRANT DELETE = 8
DB _GRANT ALL = DB _GRANT_SELECT | DB_GRANT | NSERT |
DB_GRANT_UPDATE | DB_GRANT DELETE
tableName
The name of the table you wish to grant privileges on.

userList
A comma delimited list of users to grant the privileges to. If this argument is not

261

CHAPTER 5

passed in, the privileges will be given to the general PUBLIC.
Remarks
Some databases require user names to be specified in all capital letters (i.e. Oracle).
This function does not automatically capitalize the user names passed in the comma-

separated list. This is the responsibility of the calling routine.

Example

db. Grant (DB_GRANT _SELECT | DB_GRANT | NSERT, "PARTS', "mary, sue"):

wxDb::IsFwdOnlyCursors

bool IsFwdOnlyCursors()

Indicates whether this connection to the datasource only allows forward scrolling cursors
or not. This state is set at connection creation time.

Remarks
Added as of wxWindows v2.4 release, this function is a renamed version of
wxDb::FwdOnlyCursors() to match the normal wxWindows naming conventions for class

member functions.

This function is not available in versions prior to v2.4. You should use
wxDb::FwdOnlyCursors (p. 255) for wxWindows versions priori to 2.4.

See also

wxDDb::wxDb (p. 249), wxDbGetConnection (p. 248)

wxDb::IsOpen

bool IsOpen()

Indicates whether the database connection to the datasource is currently opened.

wxDb::Open

bool Open(char *Dsn, char *Uid, char *AuthStr)
Parameters
Dsn

Data source name. The name of the ODBC data source as assigned when the
data source is initially set up through the ODBC data source manager.

262

CHAPTER 5

Uid
User ID. The name (ID) of the user you wish to connect as to the data source.
The user name (ID) determines what objects you have access to in the datasource
and what datasource privileges you have. Privileges include being able to create
new objects, update objects, delete objects and so on. Users and privileges are
normally administered by the database administrator.

AuthStr
The password associated witht the Uid.

Remarks

After a wxDb instance is created, it must then be opened. When opening a data source,
there must be hree pieces of information passed. The data source name, user name
(ID) and the password for the user. No database activity on the data source can be
performed until it is opened. This would normally be done at program startup and the
data source would remain open for the duration of the program run. Note: It is possible
to have multiple data sources open at the same time to support distributed database
connections.

Example

wxDb sanpl eDB(Db. Henv) ;
if (!sanpleDB. Qpen("Oracle 7.1 HP/UX", "gtasker", "nyPassword"))

/1 Error opening data source

}

wxDb::RollbackTrans

bool RollbackTrans()

Function to "rollback” changes made to the database. After an insert/update/delete, the
operation may be "undone" by issuing this command any time before a
wxDb::CommitTrans (p. 251) is called on the database connection.

Remarks
Transactions begin implicitly as soon as you make a change to the database. At any

time thereafter, you can save your work to the database (using wxDb::CommitTrans (p.
251)) or undo all of your changes using this function.

Calling this member function rolls back ALL open (uncommitted) transactions on this
ODBC connection.

See also

wxDb::CommitTrans (p. 251) for a special note on cursors

wxDb::SetSqlLogging

263

CHAPTER 5

bool SetSqlLogging(wxDbSqglLogState state, const wxChar *filename =
SQL_LOG_FILENAME, bool append = FALSE)

Parameters

state
Either sglLogOFF or sglLogON (see enum wxDbSqlLogState (p. 267)). Turns
logging of SQL commands sent to the data source OFF or ON.
filename
OPTIONAL. Name of the file to which the log text is to be written.
append
OPTIONAL. Whether the file is appended to or overwritten.

Remarks

When called with sglLogON, all commands sent to the data source engine are logged to
the file specified by filename. Logging is done by embedded WriteSqglLog() calls in the
database member functions, or may be manually logged by adding calls to
WriteSqlLog() in your own source code.

When called with sqlLogOFF, the logging file is closed, and any calls to WriteSqlLog()
are ignored.

wxDb::TableExists

bool TableExists(const char *tableName, const char *userID=NULL, const char
*path=NULL)

Checks the ODBC data source for the existence of a table. If a userID is specified, then
the table must be accessible by that user (user must have at least minimal privileges to
the table).

Parameters

tableName
Name of the table to check for the existence of

userlD
Owner of the table. Specify a userID when the datasource you are connected to
allows multiple unique tables with the same name to be owned by different users.
userlDis evaluated as follows:

userI D == NULL ... UserID is ignored (DEFAULT)
user|D == "" ... UserID set equal to 'this->uid
userID!I="" ... UserID set equal to 'userlD

Remarks

tableName may refer to a table, view, alias or synonym.

264

CHAPTER 5

This function does not indicate whether or not the user has privileges to query or perform
other functions on the table.

wxDb::TranslateSqlState

int TranslateSqlState(const wxChar *SQLState)
Parameters

SQLState
Converts an ODBC sqlstate to an internal error code.

Return value

Returns the internal class DB_ERR code. See wxDb::DB_STATUS (p. 244) definition.

wxDb::WriteSqglLog

bool WriteSglLog(const wxChar *logMsg)
Parameters

logMsg
Free form string to be written to the log file.

Remarks

Very useful debugging tool that may be turned on/off during run time. The passed in
string logMsg will be written to a log file if SQL logging is turned on (see
wxDb::SetSqlLogging (p. 263) for details on turning logging on/off).

Return value

If SQL logging is off when a call to WriteSglLog() is made, or there is a failure to write
the log message to the log file, the function returns FALSE without performing the
requested log, otherwise TRUE is returned.

See also

wxDb::SetSqlLogging (p. 263)

wxDb::Dbms

wxDBMS Dbms()

Remarks

265

CHAPTER 5

The return value will be of the enumerated type wxDBMS. This enumerated type
contains a list of all the currently tested and supported databases.

Additional databases may be work with these classes, but these databases returned by
this function have been tested and confirmed to work with these ODBC classes.

enum wxDBMS includes:
dbns UNI DENTI FI ED
dbnms ORACLE
dbns SYBASE_ASA
dbns SYBASE_ASE
dbnmsMY_SQL_SERVER
dbns MY_SQL
dbns POSTGRES
dbns ACCESS
dbns DBASE
dbns| NFORM X

There are known issues with conformance to the ODBC standards with several
datasources listed above. Please see the overview for specific details on which
datasource have which issues.

Return value

The return value will indicate which of the supported datasources is currently connected

to by this connection. In the event that the datasource is not recognized, a value of
'dbmsUNIDENTIFIED' is returned.

wxDb::SetDebugErrorMessages

void SetDebugErrorMessages(bool state)
state
Either TRUE (debug messages are displayed) or FALSE (debug messages are not
displayed.
Remarks
Turns on/off debug error messages from the ODBC class library. When this function is
passed TRUE, errors are reported to the user automatically in a text or pop-up dialog
when an ODBC error occurs. When passed FALSE, errors are silently handled.
When compiled in release mode (FINAL=1), this setting has no affect.

See also

wxDb constructor (p. 249)

wxDb::LogError

266

CHAPTER 5

void LogError(const char *errMsg const char *SQLState=0)
errMsg
Free-form text to display describing the error to be logged.
SQLState
Native SQL state error
Remarks
Calling this function will enter a log message in the error list maintained for the database
connection. This log message is free form and can be anything the programmer wants
to enter in the error list.

If SQL logging is turned on, the call to this function will also log the text into the SQL log
file.

See also

wxDb::WriteSqlLog (p. 265)

wxDbColInf

Used with the wxDb::GetColumns (p. 256) functions for obtaining all retrievable
information about a columns definition.

wxDbColFor

Beginning support for handling international formatting specifically on dates and floats.

Only one function is provided with this class currently:

wxDbColFor::Format

int Format(int Nation, int dbDataType, SWORD sqglDataType, short columnSize, short
decimalDigits)

Work in progress, and should be inter-related with wxLocale

wxDblInf

267

CHAPTER 5

Contains information regarding the database connection (data source name, number of
tables, etc). A pointer to a wxDbTablelnf is included in this class so a program can
create a wxDbTablelnf array instance to maintain all information about all tables in the
datasource to have all the datasource's information in one memory structure.

wxDbTable

A wxDbTable instance provides re-usable access to rows of data in a table contained
within the associated ODBC data source

Include files

<wx/dbtable.h>
<wx/db.h>

Helper classes and data structures

The following classes and structs are defined in dbtable.cpp/.h for use with the
wxDbTable class.
cl ass wxDbCol Def . Bound colum definitions for use by a
wxDbTabl e
i nstance

cl ass wxDbCol DataPtr : Pointer to dynam ¢ colunm definitions for

use with
a wxDbTabl e i nstance
cl ass wxDbl dxDef : Used in creation of non-prinmary indexes
Constants
wxDB_DEFAULT_CURSOR I ndex nunber of the cursor that each table
will use
by default.
wxDB_QUERY_ONLY Used to indicate whether a table that is
opened is
for query only, or if insert/update/deletes
will
be performed on the table. Less overhead
(cursors

and nmenory) are allocated for query only
tabl es, plus

read access tines are faster with sonme
dat asour ces.

wxDB_ROW D_LEN [Oacle specific] - Used when
CanUpdat eByRow D() is
true. Optimzes updates so they are faster

268

CHAPTER 5

by
updating on the Oracl e-specific ROND

col um rat her
t han sone ot her i ndex.

wxDB_Dl SABLE_VI EW Use to indicate when a database vi ew shoul d
not be
if atable is normally set up to use a
Vi ew.
[Currently unsupported.]
Remarks
See also

wxDbTable (p. 268)

wxDbTable::wxDbTable

wxDbTable(wxDb *pwxDb, const char *tbIName, const int nCols,const char
*qryTbIName = 0, boolgryOnly = 'wxDB_QUERY_ONLY,const char *tbIPath=NULL)

Default constructor.
Parameters
pSqlStmt
typeOfDel
pWhereClause

Default is O.

wxDbTable::wxDbTable

virtual ~wxDbTable()

Virtual default destructor.

wxDbTable::BuildDeleteStmt

void BuildSelectStmt(char *pSqlStmt, int typeOfDel, const char *pWhereClause=0)

Parameters

269

CHAPTER 5

pSqlStmt

typeOfDel

pWhereClause
Default is 0.

wxDbTable::BuildSelectStmt

void BuildSelectStmt(char *pSqlStmt, int typeOfSelect, bool distinct)
Parameters

pSqlStmt

typeOfSelect

distinct

wxDbTable::BuildUpdateStmt

void BuildSelectStmt(char *pSqlStmt, int typeOfUpd, const char *pWhereClause=0)
Parameters

pSqlStmt

typeOfUpd

pWhereClause

Default is O.

wxDbTable::BuildWhereStmt

void BuildSelectStmt(char *pWhereClause, int typeOfWhere, const char
*qualTableName=0, const char *useLikeComparison=FALSE)

Parameters
pWhereClause
typeOfWhere

gualTableName
Default is 0.

270

CHAPTER 5

useLikeComparison
Default is FALSE.

wxDbTable::CanSelectForUpdate

bool CanSelectForUpdate()

Remarks

wxDbTable::CanUpdateByROWID

bool CanUpdateByROWID()

Remarks

wxDbTable::ClearMemberVars

void ClearMemberVars()

Remarks

wxDbTable::CloseCursor

bool CloseCursor(HSTMTcursor)
Parameters

cursor

Remarks

wxDbTable::Count

ULONG Count(const char *args="*")

Parameters

args
Default is "*".

Remarks

wxDbTable::Createlndex

271

CHAPTER 5

bool Createlndex(const char *idxName, boolunique, int noldxCols, wxDbldxDef
*pldxDefs, bool attemptDrop=TRUE)

Parameters
idxName
unique
noldxCols
pldxDefs

attemptDrop
Default is TRUE.

Remarks

wxDbTable::CreateTable

bool CreateTable(bool attemptDrop=TRUE)
Parameters

attemptDrop
Default is TRUE.

Remarks

wxDbTable::DB_STATUS

bool DB_STATUS()

Accessor function for the private member variable DB_STATUS.

wxDbTable::IsColNull

bool IsColNuli(int colNo)
Parameters

colNo

Remarks

272

CHAPTER 5

wxDbTable::Delete

bool Delete()

Remarks

wxDbTable::DeleteCursor

bool DeleteCursor(HSTMT hstmtDel)
Parameters

hstmtDel

Remarks

wxDbTable::DeleteWhere

bool DeleteWhere(const char *pWhereClause)
Parameters

pWhereClause

Remarks

wxDbTable::DeleteMatching

bool DeleteMatching()

Remarks

wxDbTable::Droplndex

bool Dropindex(const char *idxName)
Parameters

idxName

Remarks

273

CHAPTER 5

wxDbTable::DropTable

bool DropTable()

Remarks

wxDbTable::GetColDefs

wxDbColDef * GetColDefs()

Remarks

wxDbTable::GetCursor

HSTMT GetCursor()

Remarks

wxDbTable::GetDb

wxDb * GetDb()

Accessor function for the private member variable pDb which is a pointer to the
datasource connection that this wxDbTable instance uses.

Remarks

wxDbTable::GetFirst

bool GetFirst()

Remarks

This function can only be used if the datasource connection used by the wxDbTable
instance was created with FwdOnlyCursors set to FALSE. If the connection does not
allow backward scrolling cursors, this function will return FALSE, and the data contained
in the bound columns will be undefined.

See also

wxDb::FwdOnlyCursors (p. 255)

wxDbTable::GetFromClause

274

CHAPTER 5

const char * GetFromClause()

Accessor function that returns the current FROM setting assigned with the
wxDbTable::SetFromClause (p. 280).

wxDbTable::GetLast

bool GetLast()

Remarks

This function can only be used if the datasource connection used by the wxDbTable
instance was created with FwdOnlyCursors set to FALSE. If the connection does not
allow backward scrolling cursors, this function will return FALSE, and the data contained
in the bound columns will be undefined.

See also

wxDb::FwdOnlyCursors (p. 255)

wxDbTable::GetNewCursor

HSTMT * GetNewCursor(bool setCursor=FALSE, bool bindColumns=TRUE)
Parameters
setCursor
Default is FALSE.
bindColumns
Default is TRUE.

Remarks

wxDbTable::GetNext

bool GetNext()

Remarks

wxDbTable::GetNumberOfColumns

bool GetNumberOfColumns()

Accessor function that returns the number of columns that are statically bound for
access by the wxDbTable instance.

275

CHAPTER 5

wxDbTable::GetOrderByClause

const char * GetOrderByClause()

Accessor function that returns the current ORDER BY setting assigned with the
wxDbTable::SetOrderByClause (p. 280).

wxDbTable::GetPrev

bool GetPrev()

Remarks

This function can only be used if the datasource connection used by the wxDbTable
instance was created with FwdOnlyCursors set to FALSE. If the connection does not
allow backward scrolling cursors, this function will return FALSE, and the data contained
in the bound columns will be undefined.

See also

wxDb::FwdOnlyCursors (p. 255)

wxDbTable::GetQueryTableName

const char * GetQueryTableName()

Remarks

wxDbTable::GetRowNum

UWORD GetRowNum()

Remarks

wxDbTable::GetTableName

const char * GetTableName()

Remarks

wxDbTable::GetTablePath

276

CHAPTER 5

const char * GetTablePath()

Remarks

wxDbTable::GetWhereClause

const char * GetWhereClause()

Accessor function that returns the current WHERE setting assigned with the
wxDbTable::SetWhereClause (p. 281)

wxDbTable::Insert

int Insert()

Remarks

wxDbTable::IsCursorClosedOnCommit

bool IsCursorClosedOnCommit()

Remarks

wxDbTable::IsQueryOnly

bool IsQueryOnly()

Accessor function that returns a value indicating if this wxDbTable instance was created
to allow only queries to be performed on the bound columns. If this function returns
TRUE, then no actions may be performed using this wxDbTable instance that would
modify (insert/delete/update) the table's data.

wxDbTable::Open

bool Open()

Remarks

wxDbTable::Query

virtual bool Query(boolforUpdate=FALSE, booldistinct=FALSE)

Parameters

277

CHAPTER 5

forUpdate

Default is FALSE.
distinct

Default is FALSE.

Remarks

wxDbTable::QueryBySqlStmt

bool QueryBySqglStmt(const char *pSqlStmt)
Parameters

pSqlStmt

Remarks

wxDbTable::QueryMatching

virtual bool QueryMatching(boolforUpdate=FALSE, booldistinct=FALSE)
Parameters
forUpdate
Default is FALSE.
distinct
Default is FALSE.

Remarks

wxDbTable::QueryOnKeyFields

bool QueryOnKeyFields(boolforUpdate=FALSE, booldistinct=FALSE)
Parameters
forUpdate
Default is FALSE.
distinct
Default is FALSE.

Remarks

wxDbTable::Refresh

278

CHAPTER 5

bool Refresh()

Remarks

wxDbTable::SetColDefs

void SetColDefs(int index, const char *fieldName, int dataType, void *pData, int
cType, int size, bool keyField = FALSE, bool upd = TRUE, bool insAllow = TRUE, bool
derivedCol = FALSE)
wxDbColDataPtr * SetColDefs(wxDbColInf *colinfs, ULONG numCaols)
Parameters
index
fieldName
dataType
pData
cType
size
keyField
Default is FALSE.
upd
Default is TRUE.
insAllow
Default is TRUE.
derivedCol
Default is FALSE.

collnfs

numcCols

Remarks

wxDbTable::SetCursor

bool Open(HSTMT *hstmtActivate = (void **) wxDB_DEFAULT_CURSOR)

Parameters

279

CHAPTER 5

hstmtActivate
Default is wxDB_DEFAULT_CURSOR.

Remarks

wxDbTable::SetFromClause

void SetFromClause(const wxString&From)
Parameters

From

wxDbTable::SetNull

bool SetNull(int colNo)

bool SetNull(const char *colName)
Parameters

colNo

colName

Remarks

wxDbTable::SetOrderByClause

void SetOrderByClause(const wxString&OrderBy)
Parameters

OrderBy

wxDbTable::SetQueryTimeout

bool SetQueryTimeout(UDWORD nSeconds)
Parameters

nSeconds

280

CHAPTER 5

Remarks

wxDbTable::SetWhereClause

void SetWhereClause(const wxString&Where)
Parameters

Where

wxDbTable::Update

bool Update()
bool Update(const char *pSqlStmt)
Parameters

pSqlStmt

Remarks

wxDbTable::UpdateWhere

bool UpdateWhere(const char *pWhereClause)
Parameters

pWhereClause

Remarks

wxDbTable::operator ++

bool operator ++()
Same as wxDbTable::GetNext (p. 275)
See also

wxDbTable::GetNext (p. 275)

281

CHAPTER 5

wxDbTable::operator --

bool operator --()
Same as wxDbTable::GetPrev (p. 276)
See also

wxDbTable::GetPrev (p. 276)

wxDbTablelnf

Currently only used by wxDb::GetCatalog() internally and wxDblnf class, but may be
used in future releases for user functions. Contains information describing the table
(Name, type, etc). A pointer to a wxDbColInf array instance is included so a program
can create a wxDbColInf array instance (using wxDb::GetColumns (p. 256)) to maintain
all information about the columns of a table in one memory structure.

wxDC

A wxDC is a device context onto which graphics and text can be drawn. It is intended to
represent a number of output devices in a generic way, so a window can have a device

context associated with it, and a printer also has a device context. In this way, the same
piece of code may write to a number of different devices, if the device context is used as
a parameter.

Derived types of wxDC have documentation for specific features only, so refer to this
section for most device context information.

Derived from
wxObiject (p. 750)
Include files
<wx/dc.h>

See also

Overview (p. 1399)

282

CHAPTER 5

wxDC::wxDC

wxDC()

Constructor.

wxDC::~wxDC

~wxDC()

Destructor.

wxDC::BeginDrawing

void BeginDrawing()

Allows optimization of drawing code under MS Windows. Enclose drawing primitives
between BeginDrawing and EndDrawing calls.

Drawing to a wxDialog panel device context outside of a system-generated OnPaint
event requires this pair of calls to enclose drawing code. This is because a Windows
dialog box does not have a retained device context associated with it, and selections
such as pen and brush settings would be lost if the device context were obtained and
released for each drawing operation.

wxDC::Blit

bool Blit(wxCoord xdest, wxCoord ydest, wxCoord width, wxCoord height, wxDC*
source, wxCoord xsrc, wxCoord ysrc, int logicalFunc = wxCOPY, bool useMask =
FALSE)

Copy from a source DC to this DC, specifying the destination coordinates, size of area to
copy, source DC, source coordinates, and logical function.

Parameters

xdest
Destination device context x position.

ydest
Destination device context y position.

width
Width of source area to be copied.

283

CHAPTER 5

height

Height of source area to be copied.

source

Source device context.

XSsrc

Source device context x position.

ysrc

Source device context y position.

logicalFunc

Logical function to use: see wxDC::SetLogicalFunction (p. 297).

useMask

If TRUE, Blit does a transparent blit using the mask that is associated with the
bitmap selected into the source device context. The Windows implementation does

the following:

1. Creates a temporary bitmap and copies the destination area into it.

2. Copies the source area into the temporary bitmap using the specified
logical function.

3. Sets the masked area in the temporary bitmap to BLACK by ANDing the
mask bitmap with the temp bitmap with the foreground colour set to
WHITE and the bg colour set to BLACK.

4. Sets the unmasked area in the destination area to BLACK by ANDing the
mask bitmap with the destination area with the foreground colour set to
BLACK and the background colour set to WHITE.

5. ORs the temporary bitmap with the destination area.

6. Deletes the temporary bitmap.

This sequence of operations ensures that the source's transparent area need not
be black, and logical functions are supported.

Remarks

There is partial support for Blit in wxPostScriptDC, under X.

See wxMemoryDC (p. 682) for typical usage.

See also

wxMemoryDC (p. 682), wxBitmap (p. 54), wxMask (p. 663)

284

CHAPTER 5

wxDC::CalcBoundingBox

void CalcBoundingBox(wxCoord x, wxCoord y)

Adds the specified point to the bounding box which can be retrieved with MinX (p. 295),
MaxX (p. 295) and MinY (p. 295), MaxY (p. 295) functions.

See also

ResetBoundingBox (p. 295)

wxDC::Clear

void Clear()

Clears the device context using the current background brush.

wxDC::CrossHair

void CrossHair(wxCoord x, wxCoord y)

Displays a cross hair using the current pen. This is a vertical and horizontal line the
height and width of the window, centred on the given point.

wxDC::DestroyClippingRegion

void DestroyClippingRegion()

Destroys the current clipping region so that none of the DC is clipped. See also
wxDC::SetClippingRegion (p. 296).

wxDC::DeviceTolLogicalX

wxCoord DeviceToLogicalX(wxCoord x)

Convert device X coordinate to logical coordinate, using the current mapping mode.

wxDC::DeviceToLogicalXRel

wxCoord DeviceToLogicalXRel(wxCoord x)

Convert device X coordinate to relative logical coordinate, using the current mapping
mode. Use this function for converting a width, for example.

285

CHAPTER 5

wxDC::DeviceToLogicalY

wxCoord DeviceTolLogicalY(wxCoord y)

Converts device Y coordinate to logical coordinate, using the current mapping mode.

wxDC::DeviceToLogicalYRel

wxCoord DeviceTolLogicalYRel(wxCoord y)

Convert device Y coordinate to relative logical coordinate, using the current mapping
mode. Use this function for converting a height, for example.

wxDC::DrawArc

void DrawArc(wxCoord x1, wxCoord y1, wxCoord x2, wxCoord y2, double xc,
double yc)

Draws an arc of a circle, centred on (xc, yc), with starting point (x1, y1) and ending at
(x2,y2). The current pen is used for the outline and the current brush for filling the
shape.

The arc is drawn in an anticlockwise direction from the start point to the end point.

wxDC::DrawBitmap

void DrawBitmap(const wxBitmapé& bitmap, wxCoord x, wxCoord y, bool
transparent)

Draw a bitmap on the device context at the specified point. If transparent is TRUE and
the bitmap has a transparency mask, the bitmap will be drawn transparently.

When drawing a mono-bitmap, the current text foreground colour will be used to draw
the foreground of the bitmap (all bits set to 1), and the current text background colour to
draw the background (all bits set to 0). See also SetTextForeground (p. 299),
SetTextBackground (p. 299) and wxMemoryDC (p. 682).

wxDC::DrawCheckMark

void DrawCheckMark(wxCoord x, wxCoord y, wxCoord width, wxCoord height)
void DrawCheckMark(const wxRect &rect)

Draws a check mark inside the given rectangle.

286

CHAPTER 5

wxDC::DrawEllipse

void DrawEllipse(wxCoord x, wxCoord y, wxCoord width, wxCoord height)
Draws an ellipse contained in the rectangle with the given top left corner, and with the

given size. The current pen is used for the outline and the current brush for filling the
shape.

wxDC::DrawEllipticArc

void DrawEllipticArc(wxCoord x, wxCoord y, wxCoord width, wxCoord height,
double start, double end)

Draws an arc of an ellipse. The current pen is used for drawing the arc and the current
brush is used for drawing the pie.

x and y specify the x and y coordinates of the upper-left corner of the rectangle that
contains the ellipse.

width and height specify the width and height of the rectangle that contains the ellipse.
start and end specify the start and end of the arc relative to the three-o'clock position
from the center of the rectangle. Angles are specified in degrees (360 is a complete

circle). Positive values mean counter-clockwise motion. If start is equal to end, a
complete ellipse will be drawn.

wxDC::Drawlcon

void Drawlcon(const wxlcon& icon, wxCoord x, wxCoord y)

Draw an icon on the display (does nothing if the device context is PostScript). This can
be the simplest way of drawing bitmaps on a window.

wxDC::DrawLine

void DrawLine(wxCoord x1, wxCoord y1, wxCoord x2, wxCoord y2)

Draws a line from the first point to the second. The current pen is used for drawing the
line.

wxDC::DrawLines

void DrawLines(int n, wxPoint points[], wxCoord xoffset = 0, wxCoord yoffset = 0)

void DrawLines(wxList *points, wxCoord xoffset = 0, wxCoord yoffset = 0)

287

CHAPTER 5

Draws lines using an array of points of size n, or list of pointers to points, adding the
optional offset coordinate. The current pen is used for drawing the lines. The
programmer is responsible for deleting the list of points.

wxPython note: The wxPython version of this method accepts a Python list of wxPoint
objects.

wxDC::DrawPolygon

void DrawPolygon(int n, wxPoint points[], wxCoord xoffset = 0, wxCoord yoffset = 0,
int fill_style = wxODDEVEN_RULE)

void DrawPolygon(wxList *points, wxCoord xoffset = 0, wxCoord yoffset = 0,
int fill_style = wxODDEVEN_RULE)

Draws a filled polygon using an array of points of size n, or list of pointers to points,
adding the optional offset coordinate.

The last argument specifies the fill rule: wxODDEVEN_RULE (the default) or
WXWINDING_RULE.

The current pen is used for drawing the outline, and the current brush for filling the
shape. Using a transparent brush suppresses filling. The programmer is responsible for
deleting the list of points.

Note that wxWindows automatically closes the first and last points.

wxPython note: The wxPython version of this method accepts a Python list of wxPoint
objects.

wxDC::DrawPoint

void DrawPoint(wxCoord x, wxCoord y)

Draws a point using the current pen.

wxDC::DrawRectangle

void DrawRectangle(wxCoord x, wxCoord y, wxCoord width, wxCoord height)

Draws a rectangle with the given top left corner, and with the given size. The current
pen is used for the outline and the current brush for filling the shape.

wxDC::DrawRotatedText

288

CHAPTER 5

void DrawRotatedText(const wxString& text, wxCoord x, wxCoord y, double angle)
Draws the text rotated by angle degrees.
See also

DrawText (p. 289)

wxDC::DrawRoundedRectangle

void DrawRoundedRectangle(wxCoord x, wxCoord y, wxCoord width, wxCoord
height, double radius = 20)

Draws a rectangle with the given top left corner, and with the given size. The corners
are quarter-circles using the given radius. The current pen is used for the outline and the
current brush for filling the shape.

If radius is positive, the value is assumed to be the radius of the rounded corner. If
radius is negative, the absolute value is assumed to be the proportion of the smallest
dimension of the rectangle. This means that the corner can be a sensible size relative to
the size of the rectangle, and also avoids the strange effects X produces when the
corners are too big for the rectangle.

wxDC::DrawSpline

void DrawSpline(wxList *points)

Draws a spline between all given control points, using the current pen. Doesn't delete
the wxList and contents. The spline is drawn using a series of lines, using an algorithm
taken from the X drawing program 'XFIG'.

void DrawSpline(wxCoord x1, wxCoord y1, wxCoord x2, wxCoord y2, wxCoord x3,
wxCoord y3)

Draws a three-point spline using the current pen.
wxPython note: The wxPython version of this method accepts a Python list of wxPoint

objects.

wXxDC::DrawText

void DrawText(const wxString& text, wxCoord x, wxCoord y)

Draws a text string at the specified point, using the current text font, and the current text
foreground and background colours.

The coordinates refer to the top-left corner of the rectangle bounding the string. See

289

CHAPTER 5

wxDC::GetTextExtent (p. 293) for how to get the dimensions of a text string, which can
be used to position the text more precisely.

NB: under wxGTK the current logical function (p. 292) is used by this function but it is

ignored by wxMSW. Thus, you should avoid using logical functions with this function in
portable programs.

wxDC::EndDoc

void EndDoc()

Ends a document (only relevant when outputting to a printer).

wxDC::EndDrawing

void EndDrawing()

Allows optimization of drawing code under MS Windows. Enclose drawing primitives
between BeginDrawing and EndDrawing calls.

wxDC::EndPage

void EndPage()

Ends a document page (only relevant when outputting to a printer).

wxDC::FloodFill

void FloodFill(wxCoord x, wxCoord y, const wxColour& colour, int
style=wxFLOOD_SURFACE)

Flood fills the device context starting from the given point, using the current brush colour,
and using a style:

wxFLOOD_SURFACE: the flooding occurs until a colour other than the given
colour is encountered.

wxFLOOD_BORDER: the area to be flooded is bounded by the given colour.

Note: this function is available in MS Windows only.

wxDC::GetBackground

wxBrushé& GetBackground()

const wxBrush& GetBackground() const

290

CHAPTER 5

Gets the brush used for painting the background (see wxDC::SetBackground (p. 296)).

wxDC::GetBackgroundMode

int GetBackgroundMode() const
Returns the current background mode: wx SOLI D or wx TRANSPARENT.
See also

SetBackgroundMode (p. 296)

wxDC::GetBrush

wxBrush& GetBrush()
const wxBrush& GetBrush() const

Gets the current brush (see wxDC::SetBrush (p. 297)).

wxDC::GetCharHeight

wxCoord GetCharHeight()

Gets the character height of the currently set font.

wxDC::GetCharWidth

wxCoord GetCharWidth()

Gets the average character width of the currently set font.

wxDC::GetClippingBox

void GetClippingBox(wxCoord *x, wxCoord *y, wxCoord *width, wxCoord *height)
Gets the rectangle surrounding the current clipping region.
wxPython note: No arguments are required and the four values defining the rectangle

are returned as a tuple.

wxDC::GetFont

291

CHAPTER 5

wxFont& GetFont()
const wxFont& GetFont() const

Gets the current font (see wxDC::SetFont (p. 297)).

wxDC::GetLogicalFunction

int GetLogicalFunction()

Gets the current logical function (see wxDC::SetLogicalFunction (p. 297)).

wxDC::GetMapMode

int GetMapMode()

Gets the mapping mode for the device context (see wxDC::SetMapMode (p. 298)).

wxDC::GetOptimization

bool GetOptimization()

Returns TRUE if device context optimization is on. See wxDC::SetOptimization (p. 298)
for details.

wxDC::GetPen

wxPen& GetPen()
const wxPen& GetPen() const

Gets the current pen (see wxDC::SetPen (p. 299)).

wxDC::GetPixel

bool GetPixel(wxCoord x, wxCoord y, wxColour *colour)

Sets colour to the colour at the specified location. Windows only; an X implementation is
being worked on. Not available for wxPostScriptDC or wxMetafileDC.

wxPython note: For wxPython the wxColour value is returned and is not required as a
parameter.

292

CHAPTER 5

wxDC::GetSize

void GetSize(wxCoord *width, wxCoord *height)

For a PostScript device context, this gets the maximum size of graphics drawn so far on
the device context.

For a Windows printer device context, this gets the horizontal and vertical resolution. It
can be used to scale graphics to fit the page when using a Windows printer device
context. For example, if maxX and maxY represent the maximum horizontal and vertical
'pixel values used in your application, the following code will scale the graphic to fit on
the printer page:

wxCoord w, h;

dc. Get Si ze(&w, &h);

doubl e scal eX=(doubl e) (maxX/ w) ;

doubl e scal eY=(doubl e) (maxY/ h);
dc. Set User Scal e(mi n(scal eX, scal eY), m n(scal eX, scal eY));

wxPython note: In place of a single overloaded method name, wxPython implements
the following methods:

GetSize() Returns a wxSize

GetSizeTuple() Returns a 2-tuple (width, height)

wxDC::GetTextBackground

wxColour& GetTextBackground()
const wxColour& GetTextBackground() const

Gets the current text background colour (see wxDC::SetTextBackground (p. 299)).

wXxDC::GetTextExtent

void GetTextExtent(const wxString& string, wxCoord *w, wxCoord *h,
wxCoord *descent = NULL, wxCoord *externalLeading = NULL, wxFont *font =
NULL)

Gets the dimensions of the string using the currently selected font. string is the text
string to measure, w and h are the total width and height respectively, descent is the
dimension from the baseline of the font to the bottom of the descender, and
externalLeading is any extra vertical space added to the font by the font designer
(usually is zero).

The optional parameter font specifies an alternative to the currently selected font: but
note that this does not yet work under Windows, so you need to set a font for the device

293

CHAPTER 5

context first.

See also wxFont (p. 437), wxDC::SetFont (p. 297).

wxPython note: The following methods are implemented in wxPython:
GetTextExtent(string) Returns a 2-tuple, (width, height)

GetFullTextExtent(string, font=NULL)Returns a 4-tuple, (width, height,
descent, externalLeading)

wxDC::GetTextForeground

wxColour& GetTextForeground()
const wxColouré& GetTextForeground() const

Gets the current text foreground colour (see wxDC::SetTextForeground (p. 299)).

wxDC::GetUserScale

void GetUserScale(double *x, double *y)

Gets the current user scale factor (set by SetUserScale (p. 299)).

wxDC::LogicalToDeviceX

wxCoord LogicalToDeviceX(wxCoord Xx)

Converts logical X coordinate to device coordinate, using the current mapping mode.

wxDC::LogicalToDeviceXRel

wxCoord LogicalToDeviceXRel(wxCoord x)

Converts logical X coordinate to relative device coordinate, using the current mapping
mode. Use this for converting a width, for example.

wxDC::LogicalToDeviceY

wxCoord LogicalToDeviceY(wxCoord y)

Converts logical Y coordinate to device coordinate, using the current mapping mode.

294

CHAPTER 5

wxDC::LogicalToDeviceYRel

wxCoord LogicalToDeviceYRel(wxCoord y)

Converts logical Y coordinate to relative device coordinate, using the current mapping
mode. Use this for converting a height, for example.

wXxDC::MaxX

wxCoord MaxX()

Gets the maximum horizontal extent used in drawing commands so far.

wxDC::MaxY

wxCoord MaxY()

Gets the maximum vertical extent used in drawing commands so far.

wxDC::MinX

wxCoord MinX()

Gets the minimum horizontal extent used in drawing commands so far.

wxDC::MinY

wxCoord MinY()

Gets the minimum vertical extent used in drawing commands so far.

wxDC::0k

bool Ok()

Returns TRUE if the DC is ok to use.

wxDC::ResetBoundingBox

void ResetBoundingBox()

Resets the bounding box: after a call to this function, the bounding box doesn't contain

295

CHAPTER 5

anything.
See also

CalcBoundingBox (p. 285)

wxDC::SetDeviceOrigin

void SetDeviceOrigin(wxCoord x, wxCoord y)
Sets the device origin (i.e., the origin in pixels after scaling has been applied).
This function may be useful in Windows printing operations for placing a graphic on a

page.

wxDC::SetBackground

void SetBackground(const wxBrushé& brush)

Sets the current background brush for the DC.

wxDC::SetBackgroundMode

void SetBackgroundMode(int mode)

mode may be one of wxSOLID and wxTRANSPARENT. This setting determines whether
text will be drawn with a background colour or not.

wxDC::SetClippingRegion

void SetClippingRegion(wxCoord x, wxCoord y, wxCoord width, wxCoord height)
void SetClippingRegion(const wxRegion& region)
Sets the clipping region for the DC. The clipping region is an area to which drawing is

restricted. Possible uses for the clipping region are for clipping text or for speeding up
window redraws when only a known area of the screen is damaged.

See also

wxDC::DestroyClippingRegion (p. 285), wxRegion (p. 890)

wxDC::SetPalette

void SetPalette(const wxPalette& palette)

296

CHAPTER 5

If this is a window DC or memory DC, assigns the given palette to the window or bitmap
associated with the DC. If the argument is wxNullPalette, the current palette is selected
out of the device context, and the original palette restored.

See wxPalette (p. 765) for further details.

wxDC::SetBrush

void SetBrush(const wxBrush& brush)
Sets the current brush for the DC.

If the argument is wxNullBrush, the current brush is selected out of the device context,
and the original brush restored, allowing the current brush to be destroyed safely.

See also wxBrush (p. 80).
See also wxMemoryDC (p. 682) for the interpretation of colours when drawing into a

monochrome bitmap.

wxDC::SetFont

void SetFont(const wxFont& font)
Sets the current font for the DC.

If the argument is wxNullFont, the current font is selected out of the device context, and
the original font restored, allowing the current font to be destroyed safely.

See also wxFont (p. 437).

wxDC::SetLogicalFunction

void SetLogicalFunction(int function)

Sets the current logical function for the device context. This determines how a source
pixel (from a pen or brush colour, or source device context if using wxDC::Blit (p. 283))
combines with a destination pixel in the current device context.

The possible values and their meaning in terms of source and destination pixel values
are as follows:

wx AND src AND dst
WXAND_| NVERT (NOT src) AND dst
WXAND REVERSE src AND (NOT dst)
wx CLEAR 0

wx COPY src

297

CHAPTER 5

wWx EQUI V (NOT src) XOR dst

wx| NVERT NOT dst

wx NAND (NOT src) OR (NOT dst)
WX NOR (NOT src) AND (NOT dst)
wxNO _OP dst

wx OR src OR dst

WX OR | NVERT (NOT src) OR dst
wxOR_REVERSE src OR (NOT dst)

wWx SET 1

WX SRC_| NVERT NOT src

WX XOR src XOR dst

The default is wxCOPY, which simply draws with the current colour. The others combine
the current colour and the background using a logical operation. wxINVERT is
commonly used for drawing rubber bands or moving outlines, since drawing twice
reverts to the original colour.

wxDC::SetMapMode

void SetMapMode(int int)

The mapping mode of the device context defines the unit of measurement used to
convert logical units to device units. Note that in X, text drawing isn't handled
consistently with the mapping mode; a font is always specified in point size. However,
setting the user scale (see wxDC::SetUserScale (p. 299)) scales the text appropriately.
In Windows, scaleable TrueType fonts are always used; in X, results depend on
availability of fonts, but usually a reasonable match is found.

Note that the coordinate origin should ideally be selectable, but for now is always at the
top left of the screen/printer.

Drawing to a Windows printer device context under UNIX uses the current mapping
mode, but mapping mode is currently ignored for PostScript output.

The mapping mode can be one of the following:

wxMM_TWIPS
wxMM_POINTS
wxMM_METRIC

Each logical unit is 1/20 of a point, or 1/1440 of an inch.
Each logical unit is a point, or 1/72 of an inch.
Each logical unitis 1 mm.

wxMM_LOMETRIC
WxMM_TEXT

Each logical unit is 1/10 of a mm.
Each logical unit is 1 pixel.

wxDC::SetOptimization

void SetOptimization(bool optimize)

If optimize is TRUE (the default), this function sets optimization mode on. This currently
means that under X, the device context will not try to set a pen or brush property if it is

298

CHAPTER 5

known to be set already. This approach can fall down if non-wxWindows code is using
the same device context or window, for example when the window is a panel on which
the windowing system draws panel items. The wxWindows device context 'memory" will
now be out of step with reality.

Setting optimization off, drawing, then setting it back on again, is a trick that must
occasionally be employed.

wxDC::SetPen

void SetPen(const wxPen& pen)
Sets the current pen for the DC.

If the argument is wxNullPen, the current pen is selected out of the device context, and
the original pen restored.

See also wxMemoryDC (p. 682) for the interpretation of colours when drawing into a
monochrome bitmap.

wxDC::SetTextBackground

void SetTextBackground(const wxColouré& colour)

Sets the current text background colour for the DC.

wxDC::SetTextForeground

void SetTextForeground(const wxColour& colour)
Sets the current text foreground colour for the DC.
See also wxMemoryDC (p. 682) for the interpretation of colours when drawing into a

monochrome bitmap.

wxDC::SetUserScale

void SetUserScale(double xScale, double yScale)

Sets the user scaling factor, useful for applications which require 'zooming'.

wxDC::StartDoc

bool StartDoc(const wxString& message)

299

CHAPTER 5

Starts a document (only relevant when outputting to a printer). Message is a message to
show whilst printing.

wxDC::StartPage

bool StartPage()

Starts a document page (only relevant when outputting to a printer).

wxDDEClient

A wxDDEClient object represents the client part of a client-server DDE (Dynamic Data
Exchange) conversation.

To create a client which can communicate with a suitable server, you need to derive a
class from wxDDEConnection and another from wxDDECIient. The custom
wxDDEConnection class will intercept communications in a ‘conversation' with a server,
and the custom wxDDEServer is required so that a user-overridden
wxDDECIlient::OnMakeConnection (p. 301) member can return a wxDDEConnection of
the required class, when a connection is made.

This DDE-based implementation is available on Windows only, but a platform-
independent, socket-based version of this API is available using wxTCPClient (p. 1066).

Derived from

wxClientBase
wxObiject (p. 750)

Include files
<wx/dde.h>
See also

wxDDEServer (p. 305), wxDDEConnection (p. 301), Interprocess communications
overview (p. 1437)

wxDDECIlient::wxDDEClient

wxDDEClient()

Constructs a client object.

300

CHAPTER 5

wxDDECIlient::MakeConnection

wxConnectionBase * MakeConnection(const wxString& host, const wxString&
service, const wxString& topic)

Tries to make a connection with a server specified by the host (machine name under
UNIX, ignored under Windows), service hame (must contain an integer port number
under UNIX), and topic string. If the server allows a connection, a wxDDEConnection
object will be returned. The type of wxDDEConnection returned can be altered by
overriding the wxDDECIient::OnMakeConnection (p. 301) member to return your own
derived connection object.

wxDDECIlient::OnMakeConnection

wxConnectionBase * OnMakeConnection()

The type of wxDDEConnection (p. 301) returned from a wxDDECIient::MakeConnection
(p. 301) call can be altered by deriving the OnMakeConnection member to return your
own derived connection object. By default, a wxDDEConnection object is returned.

The advantage of deriving your own connection class is that it will enable you to

intercept messages initiated by the server, such as wxDDEConnection::OnAdvise (p.
303). You may also want to store application-specific data in instances of the new class.

wxDDECIlient::ValidHost

bool ValidHost(const wxString& host)

Returns TRUE if this is a valid host name, FALSE otherwise. This always returns TRUE
under MS Windows.

wxDDEConnection

A wxDDEConnection object represents the connection between a client and a server. It
can be created by making a connection using a wxDDECIient (p. 300) object, or by the
acceptance of a connection by a wxDDEServer (p. 305) object. The bulk of a DDE
(Dynamic Data Exchange) conversation is controlled by calling members in a
wxDDEConnection object or by overriding its members.

An application should normally derive a new connection class from wxDDEConnection,
in order to override the communication event handlers to do something interesting.

This DDE-based implementation is available on Windows only, but a platform-

301

CHAPTER 5

independent, socket-based version of this API is available using wxTCPConnection (p.
1068).

Derived from

wxConnectionBase
wxObiject (p. 750)

Include files

<wx/dde.h>

Types

wxIPCFormat is defined as follows:

enum wx| PCFor mat

{

wxl PC_| N\VALI D = 0,

wx| PC_TEXT = 1, /* CF_TEXT */
wx| PC_BI TMAP = 2, /* CF_BITMAP */
wx| PC_METAFI LE = 3, /* CF_METAFILEPICT */
wxl PC_SYLK = 4,

wx| PC DI F = 5,

wx| PC_TI FF = 6,

wx| PC_OEMTEXT = 7, 1* CF_CEMIEXT */
wx| PC DIB = 8, I/* CFDIB*/

wx| PC_PALETTE = 9,

wx| PC_PENDATA = 10,

wx| PC_RI FF = 11,

wx| PC_WAVE = 12,

wx| PC_UNI CODETEXT = 13,

wx| PC_ENHVETAFI LE = 14,

wx| PC_FI LENAVE = 15, /* CF_HDROP */
wx| PC_LOCALE = 16,

wx| PC_PRI VATE = 20

b
See also

wxDDEClient (p. 300), wxDDEServer (p. 305), Interprocess communications overview
(p. 1437)

wxDDEConnection::wxDDEConnection

wxDDEConnection()
wxDDEConnection(char* buffer, int size)

Constructs a connection object. If no user-defined connection object is to be derived

302

CHAPTER 5

from wxDDEConnection, then the constructor should not be called directly, since the
default connection object will be provided on requesting (or accepting) a connection.
However, if the user defines his or her own derived connection object, the
wxDDEServer::OnAcceptConnection (p. 306) and/or wxDDECIlient::OnMakeConnection
(p. 301) members should be replaced by functions which construct the new connection
object. If the arguments of the wxDDEConnection constructor are void, then a default
buffer is associated with the connection. Otherwise, the programmer must provide a a
buffer and size of the buffer for the connection object to use in transactions.

wxDDEConnection::Advise

bool Advise(const wxString& item, char* data, int size = -1, wxIPCFormat format =
WXCF_TEXT)

Called by the server application to advise the client of a change in the data associated

with the given item. Causes the client connection's wxDDEConnection::OnAdvise (p.
303)member to be called. Returns TRUE if successful.

wxDDEConnection::Execute

bool Execute(char* data, int size = -1, wxIPCFormat format = wxCF_TEXT)

Called by the client application to execute a command on the server. Can also be used
to transfer arbitrary data to the server (similar to wxDDEConnection::Poke (p. 305) in
that respect). Causes the server connection's wxDDEConnection::OnExecute (p. 304)
member to be called. Returns TRUE if successful.

wxDDEConnection::Disconnect

bool Disconnect()

Called by the client or server application to disconnect from the other program; it causes
the wxDDEConnection::OnDisconnect (p. 304) message to be sent to the corresponding
connection object in the other program. The default behaviour of OnDisconnect is to
delete the connection, but the calling application must explicitly delete its side of the
connection having called Disconnect. Returns TRUE if successful.

wxDDEConnection::OnAdvise

virtual bool OnAdvise(const wxString& topic, const wxString& item, char* data, int
size, wxIPCFormat format)

Message sent to the client application when the server notifies it of a change in the data
associated with the given item.

303

CHAPTER 5

wxDDEConnection::OnDisconnect

virtual bool OnDisconnect()

Message sent to the client or server application when the other application notifies it to
delete the connection. Default behaviour is to delete the connection object.

wxDDEConnection::OnExecute

virtual bool OnExecute(const wxString& topic, char* data, int size, wxIPCFormat
format)

Message sent to the server application when the client notifies it to execute the given
data. Note that there is no item associated with this message.

wxDDEConnection::OnPoke

virtual bool OnPoke(const wxString& topic, const wxString& item, char* data, int
size, wxIPCFormat format)

Message sent to the server application when the client naotifies it to accept the given
data.

wxDDEConnection::OnRequest

virtual char* OnRequest(const wxString& topic, const wxString& item, int *size,
wxIPCFormat format)

Message sent to the server application when the client calls
wxDDEConnection::Request (p. 305). The server should respond by returning a
character string from OnRequest, or NULL to indicate no data.

wxDDEConnection::OnStartAdvise

virtual bool OnStartAdvise(const wxString& topic, const wxString& item)

Message sent to the server application by the client, when the client wishes to start an

‘advise loop' for the given topic and item. The server can refuse to participate by
returning FALSE.

wxDDEConnection::OnStopAdvise

virtual bool OnStopAdvise(const wxString& topic, const wxString& item)

304

CHAPTER 5

Message sent to the server application by the client, when the client wishes to stop an
‘advise loop' for the given topic and item. The server can refuse to stop the advise loop
by returning FALSE, although this doesn't have much meaning in practice.

wxDDEConnection::Poke

bool Poke(const wxString& item, char* data, int size = -1, wxIPCFormat format =
WXCF_TEXT)

Called by the client application to poke data into the server. Can be used to transfer

arbitrary data to the server. Causes the server connection's wxDDEConnection::OnPoke
(p. 304) member to be called. Returns TRUE if successful.

wxDDEConnection::Request

char* Request(const wxString& item, int *size, wxIPCFormat format = wxIPC_TEXT)

Called by the client application to request data from the server. Causes the server
connection's wxDDEConnection::OnRequest (p. 304) member to be called. Returns a
character string (actually a pointer to the connection's buffer) if successful, NULL
otherwise.

wxDDEConnection::StartAdvise

bool StartAdvise(const wxString& item)
Called by the client application to ask if an advise loop can be started with the server.

Causes the server connection's wxDDEConnection::OnStartAdvise (p. 304) member to
be called. Returns TRUE if the server okays it, FALSE otherwise.

wxDDEConnection::StopAdvise

bool StopAdvise(const wxString& item)
Called by the client application to ask if an advise loop can be stopped. Causes the

server connection's wxDDEConnection::OnStopAdvise (p. 304) member to be called.
Returns TRUE if the server okays it, FALSE otherwise.

wxDDEServer

A wxDDEServer object represents the server part of a client-server DDE (Dynamic Data
Exchange) conversation.

305

CHAPTER 5

This DDE-based implementation is available on Windows only, but a platform-
independent, socket-based version of this API is available using wxTCPServer (p. 1072).

Derived from
wxServerBase
Include files
<wx/dde.h>
See also

wxDDECIient (p. 300), wxDDEConnection (p. 301), IPC overview (p. 1437)

wxDDEServer::wxDDEServer

wxDDEServer()

Constructs a server object.

wxDDEServer::Create

bool Create(const wxString& service)
Registers the server using the given service name. Under UNIX, the string must contain

an integer id which is used as an Internet port number. FALSE is returned if the call
failed (for example, the port number is already in use).

wxDDEServer::0OnAcceptConnection

virtual wxConnectionBase * OnAcceptConnection(const wxString& topic)

When a client calls MakeConnection, the server receives the message and this
member is called. The application should derive a member to intercept this message and
return a connection object of either the standard wxDDEConnection type, or of a user-
derived type. If the topic is "STDIO", the application may wish to refuse the connection.
Under UNIX, when a server is created the OnAcceptConnection message is always sent
for standard input and output, but in the context of DDE messages it doesn't make a lot
of sense.

wxDebugContext

306

CHAPTER 5

A class for performing various debugging and memory tracing operations. Full
functionality (such as printing out objects currently allocated) is only present in a
debugging build of wxWindows, i.e. if the _ WXDEBUG___ symbol is defined.
wxDebugContext and related functions and macros can be compiled out by setting
WXUSE_DEBUG_CONTEXT to 0 is setup.h

Derived from

No parent class.

Include files

<wx/memory.h>

See also

Overview (p. 1364)

wxDebugContext::Check

int Check()

Checks the memory blocks for errors, starting from the currently set checkpoint.
Return value

Returns the number of errors, so a value of zero represents success. Returns -1 if an

error was detected that prevents further checking.

wxDebugContext::Dump

bool Dump()

Performs a memory dump from the currently set checkpoint, writing to the current debug
stream. Calls the Dump member function for each wxObject derived instance.

Return value

TRUE if the function succeeded, FALSE otherwise.

wxDebugContext::GetCheckPrevious

bool GetCheckPrevious()

307

CHAPTER 5

Returns TRUE if the memory allocator checks all previous memory blocks for errors. By
default, this is FALSE since it slows down execution considerably.

See also

wxDebugContext::SetCheckPrevious (p. 310)

wxDebugContext::GetDebugMode

bool GetDebugMode()

Returns TRUE if debug mode is on. If debug mode is on, the wxObject new and delete
operators store or use information about memory allocation. Otherwise, a straight malloc
and free will be performed by these operators.

See also

wxDebugContext::SetDebugMode (p. 310)

wxDebugContext::GetLevel

int GetLevel()
Gets the debug level (default 1). The debug level is used by the wxTraceLevel function
and the WXTRACELEVEL macro to specify how detailed the trace information is; setting

a different level will only have an effect if trace statements in the application specify a
value other than one.

This is obsolete, replaced by wxLog (p. 655) functionality.
See also

wxDebugContext::SetLevel (p. 311)

wxDebugContext::GetStream

ostreamé& GetStream()

Returns the output stream associated with the debug context.
This is obsolete, replaced by wxLog (p. 655) functionality.
See also

wxDebugContext::SetStream (p. 311)

308

CHAPTER 5

wxDebugContext::GetStreamBuf

streambuf* GetStreamBuf()

Returns a pointer to the output stream buffer associated with the debug context. There
may not necessarily be a stream buffer if the stream has been set by the user.

This is obsolete, replaced by wxLog (p. 655) functionality.

wxDebugContext::HasStream

bool HasStream()

Returns TRUE if there is a stream currently associated with the debug context.
This is obsolete, replaced by wxLog (p. 655) functionality.

See also

wxDebugContext::SetStream (p. 311), wxDebugContext::GetStream (p. 308)

wxDebugContext::PrintClasses

bool PrintClasses()

Prints a list of the classes declared in this application, giving derivation and whether
instances of this class can be dynamically created.

See also

wxDebugContext::PrintStatistics (p. 309)

wxDebugContext::PrintStatistics

bool PrintStatistics(bool detailed = TRUE)
Performs a statistics analysis from the currently set checkpoint, writing to the current
debug stream. The number of object and non-object allocations is printed, together with
the total size.
Parameters
detailed
If TRUE, the function will also print how many objects of each class have been
allocated, and the space taken by these class instances.

See also

309

CHAPTER 5

wxDebugContext::PrintStatistics (p. 309)

wxDebugContext::SetCheckpoint

void SetCheckpoint(bool all = FALSE)

Sets the current checkpoint: Dump and PrintStatistics operations will be performed from
this point on. This allows you to ignore allocations that have been performed up to this
point.

Parameters

all

If TRUE, the checkpoint is reset to include all memory allocations since the
program started.

wxDebugContext::SetCheckPrevious

void SetCheckPrevious(bool check)

Tells the memory allocator to check all previous memory blocks for errors. By default,
this is FALSE since it slows down execution considerably.

See also

wxDebugContext::GetCheckPrevious (p. 307)

wxDebugContext::SetDebugMode

void SetDebugMode(bool debug)

Sets the debug mode on or off. If debug mode is on, the wxObject new and delete
operators store or use information about memory allocation. Otherwise, a straight malloc
and free will be performed by these operators.

By default, debug mode is on if __ WXDEBUG___is defined. If the application uses this
function, it should make sure that all object memory allocated is deallocated with the
same value of debug mode. Otherwise, the delete operator might try to look for memory
information that does not exist.

See also

wxDebugContext::GetDebugMode (p. 308)

wxDebugContext::SetFile

310

CHAPTER 5

bool SetFile(const wxString& filename)
Sets the current debug file and creates a stream. This will delete any existing stream

and stream buffer. By default, the debug context stream outputs to the debugger
(Windows) or standard error (other platforms).

wxDebugContext::SetLevel

void SetLevel(int level)

Sets the debug level (default 1). The debug level is used by the wxTraceLevel function
and the WXTRACELEVEL macro to specify how detailed the trace information is; setting
a different level will only have an effect if trace statements in the application specify a
value other than one.

This is obsolete, replaced by wxLog (p. 655) functionality.

See also

wxDebugContext::GetLevel (p. 308)

wxDebugContext::SetStandardError

bool SetStandardError()

Sets the debugging stream to be the debugger (Windows) or standard error (other
platforms). This is the default setting. The existing stream will be flushed and deleted.

This is obsolete, replaced by wxLog (p. 655) functionality.

wxDebugContext::SetStream

void SetStream(ostream* stream, streambuf* streamBuf = NULL)

Sets the stream and optionally, stream buffer associated with the debug context. This
operation flushes and deletes the existing stream (and stream buffer if any).

This is obsolete, replaced by wxLog (p. 655) functionality.
Parameters

stream
Stream to associate with the debug context. Do not set this to NULL.

streamBuf
Stream buffer to associate with the debug context.

311

CHAPTER 5

See also

wxDebugContext::GetStream (p. 308), wxDebugContext::HasStream (p. 309)

wxDebugStreamBuf

This class allows you to treat debugging output in a similar (stream-based) fashion on
different platforms. Under Windows, an ostream constructed with this buffer outputs to
the debugger, or other program that intercepts debugging output. On other platforms, the
output goes to standard error (cerr).

This is soon to be obsolete, replaced by wxLog (p. 655) functionality.

Derived from

streambuf

Include files

<wx/memory.h>

Example

wxDebugsSt r eanBuf st reanBuf;
ostream strean(&streanBuf);

stream<< "Hello world!" << endl;
See also

Overview (p. 1364)

wxDialog

A dialog box is a window with a title bar and sometimes a system menu, which can be
moved around the screen. It can contain controls and other windows.

Derived from

wxPanel (p. 769)
wxWindow (p. 1190)
wxEvtHandler (p. 380)
wxObiject (p. 750)

312

CHAPTER 5

Include files
<wx/dialog.h>
Remarks

There are two kinds of dialog - modal and modeless. A modal dialog blocks program
flow and user input on other windows until it is dismissed, whereas a modeless dialog
behaves more like a frame in that program flow continues, and input on other windows is
still possible. You specify the type of dialog with the wxDIALOG_MODAL and
WXDIALOG_MODELESS window styles.

A dialog may be loaded from a wxWindows resource file (extension wxr), which may
itself be created by Dialog Editor. For details, see The wxWindows resource system (p.
1387), wxWindows resource functions (p. 1299) and the resource sample.

An application can define an OnCloseWindow (p. 1213) handler for the dialog to respond
to system close events.

Window styles

WxDIALOG_MODAL Specifies that the dialog box will be modal.

WXCAPTION Puts a caption on the dialog box.

WXDEFAULT_DIALOG_STYLE Equivalent to a combination of wxCAPTION,
WXSYSTEM_MENU and wxTHICK_FRAME

WXRESIZE_BORDER Display a resizeable frame around the window.

WXSYSTEM_MENU Display a system menu.

WXTHICK_FRAME Display a thick frame around the window.

WXSTAY_ON_TOP The dialog stays on top of all other windows (Windows
only).

wxNO_3D Under Windows, specifies that the child controls should not

have 3D borders unless specified in the control.
Under Unix or Linux, MWM (the Motif Window Manager) or other window managers
reckognizing the MHM hints should be running for any of these styles to have an effect.
See also Generic window styles (p. 1378).
See also

wxDialog overview (p. 1381), wxFrame (p. 454), Resources (p. 9), Validator overview (p.
1381)

wxDialog::wxDialog

313

CHAPTER 5

wxDialog()

Default constructor.

wxDialog(wxWindow* parent, wxWindowID id, const wxString& title, const
wxPoint& pos = wxDefaultPosition, const wxSize& size = wxDefaultSize, long style =
WXDEFAULT_DIALOG_STYLE, const wxString& name = "dialogBox")

Constructor.

Parameters

parent
Can be NULL, a frame or another dialog box.

id
An identifier for the dialog. A value of -1 is taken to mean a default.

title
The title of the dialog.

pos
The dialog position. A value of (-1, -1) indicates a default position, chosen by either
the windowing system or wxWindows, depending on platform.

size
The dialog size. A value of (-1, -1) indicates a default size, chosen by either the
windowing system or wxWindows, depending on platform.

style
The window style. See wxDialog (p. 312).

name
Used to associate a name with the window, allowing the application user to set
Motif resource values for individual dialog boxes.

See also

wxDialog::Create (p. 315)

wxDialog::~wxDialog

~wxDialog()

Destructor. Deletes any child windows before deleting the physical window.

wxDialog::Centre

314

CHAPTER 5

void Centre(int direction = wxBOTH)
Centres the dialog box on the display.
Parameters

direction

May be wx HORI ZONTAL, wx VERTI CAL or wx BOTH.

wxDialog::Create

bool Create(wxWindow* parent, wxWindowID id, const wxString& title, const
wxPoint& pos = wxDefaultPosition, const wxSize& size = wxDefaultSize, long style =
WXDEFAULT_DIALOG_STYLE, const wxString& name = "dialogBox")

Used for two-step dialog box construction. See wxDialog::wxDialog (p. 313) for details.

wxDialog::EndModal

void EndModal(int retCode)

Ends a modal dialog, passing a value to be returned from the wxDialog::ShowModal (p.
320) invocation.

Parameters

retCode
The value that should be returned by ShowModal.

See also

wxDialog::ShowModal (p. 320), wxDialog::GetReturnCode (p. 315),
wxDialog::SetReturnCode (p. 319)

wxDialog::GetReturnCode

int GetReturnCode()
Gets the return code for this window.
Remarks

A return code is normally associated with a modal dialog, where wxDialog::ShowModal
(p. 320) returns a code to the application.

See also

315

CHAPTER 5

wxDialog::SetReturnCode (p. 319), wxDialog::ShowModal (p. 320), wxDialog::EndModal
(p. 315)

wxDialog::GetTitle

wxString GetTitle() const

Returns the title of the dialog box.

wxDialog::Iconize

void Iconize(const bool iconize)
Iconizes or restores the dialog. Windows only.
Parameters

iconize
If TRUE, iconizes the dialog box; if FALSE, shows and restores it.

Remarks
Note that in Windows, iconization has no effect since dialog boxes cannot be iconized.
However, applications may need to explicitly restore dialog boxes under Motif which

have user-iconizable frames, and under Windows calling | coni ze(FALSE) will bring
the window to the front, as does Show(TRUE) .

wxDialog::Islconized

bool Islconized() const
Returns TRUE if the dialog box is iconized. Windows only.
Remarks

Always returns FALSE under Windows since dialogs cannot be iconized.

wxDialog::IsModal

bool IsModal() const

Returns TRUE if the dialog box is modal, FALSE otherwise.

wxDialog::OnCharHook

316

CHAPTER 5

void OnCharHook(wxKeyEvent& event)

This member is called to allow the window to intercept keyboard events before they are
processed by child windows.

For more information, see wxWindow::OnCharHook (p. 1212)
Remarks
wxDialog implements this handler to fake a cancel command if the escape key has been

pressed. This will dismiss the dialog.

wxDialog::OnApply

void OnApply(wxCommandEvent& event)
The default handler for the wxID_APPLY identifier.

Remarks

This function calls wxWindow::Validate (p. 1239) and
wxWindow:: TransferDataToWindow (p. 1238).

See also

wxDialog::OnOK (p. 317), wxDialog::OnCancel (p. 317)

wxDialog::OnCancel

void OnCancel(wxCommandEvent& event)
The default handler for the wxID_CANCEL identifier.
Remarks

The function either calls EndModal(wxID_CANCEL) if the dialog is modal, or sets the
return value to wxID_CANCEL and calls Show(FALSE) if the dialog is modeless.

See also

wxDialog::OnOK (p. 317), wxDialog::OnApply (p. 317)

wxDialog::OnOK

void OnOK(wxCommandEvent& event)

The default handler for the wxID_OK identifier.

317

CHAPTER 5

Remarks

The function calls wxWindow::Validate (p. 1239), then

wxWindow:: TransferDataFromWindow (p. 1238). If this returns TRUE, the function either
calls EndModal(wxID_OK) if the dialog is modal, or sets the return value to wxID_OK
and calls Show(FALSE) if the dialog is modeless.

See also

wxDialog::OnCancel (p. 317), wxDialog::OnApply (p. 317)

wxDialog::OnSysColourChanged

void OnSysColourChanged(wxSysColourChangedEvent& event)
The default handler for wxEVT_SYS_COLOUR_CHANGED.
Parameters

event
The colour change event.

Remarks

Changes the dialog's colour to conform to the current settings (Windows only). Add an
event table entry for your dialog class if you wish the behaviour to be different (such as
keeping a user-defined background colour). If you do override this function, call

wxWindow::0OnSysColourChanged (p. 1222) to propagate the notification to child
windows and controls.

See also

wxSysColourChangedEvent (p. 1039)

wxDialog::SetModal

void SetModal(const bool flag)

NB: This function is deprecated and doesn't work for all ports, just use ShowModal (p.
320) to show a modal dialog instead.

Allows the programmer to specify whether the dialog box is modal (wxDialog::Show
blocks control until the dialog is hidden) or modeless (control returns immediately).

Parameters

flag

318

CHAPTER 5

If TRUE, the dialog will be modal, otherwise it will be modeless.

wxDialog::SetReturnCode

void SetReturnCode(int retCode)
Sets the return code for this window.
Parameters

retCode
The integer return code, usually a control identifier.

Remarks

A return code is normally associated with a modal dialog, where wxDialog::ShowModal
(p. 320) returns a code to the application. The function wxDialog::EndModal (p. 315)
calls SetReturnCode.

See also

wxDialog::GetReturnCode (p. 315), wxDialog::ShowModal (p. 320), wxDialog::EndModal
(p. 315)

wxDialog::SetTitle

void SetTitle(const wxString& title)
Sets the title of the dialog box.
Parameters

title

The dialog box title.

wxDialog::Show

bool Show(const bool show)
Hides or shows the dialog.
Parameters
show
If TRUE, the dialog box is shown and brought to the front; otherwise the box is

hidden. If FALSE and the dialog is modal, control is returned to the calling
program.

319

CHAPTER 5

Remarks

The preferred way of dismissing a modal dialog is to use wxDialog::EndModal (p. 315).

wxDialog::ShowModal

int ShowModal()

Shows a modal dialog. Program flow does not return until the dialog has been dismissed
with wxDialog::EndModal (p. 315).

Return value
The return value is the value set with wxDialog::SetReturnCode (p. 319).
See also

wxDialog::EndModal (p. 315), wxDialog:GetReturnCode (p. 315),
wxDialog::SetReturnCode (p. 319)

wxDialUpEvent

This is the event class for the dialup events sent by wxDialUpManager (p. 321).
Derived from

wxEvent (p. 377)
wxObiject (p. 750)

Include files

<wx/dialup.h>

wxDialUpEvent::wxDialUpEvent

wxDialUpEvent(bool isConnected, bool isOwnEvent)

Constructor is only used by wxDialUpManager (p. 321).

wxDialUpEvent::IsConnectedEvent

320

CHAPTER 5

bool IsConnectedEvent() const

Is this a CONNECTED or DI SCONNECTED event? In other words, does it notify about
transition from offline to online state or vice versa?

wxDialUpEvent::IsOwnEvent

bool IsOwnEvent() const

Does this event come from wxDialUpManager::Dial() or from some extrenal process (i.e.
does it result from our own attempt to establish the connection)?

wxDialUpManager

This class encapsulates functions dealing with veryfying the connection status of the
workstation (connected to the Internet via a direct connection, connected through a
modem or not connected at all) and to establish this connection if possible/required (i.e.
in the case of the modem).

The program may also wish to be notified about the change in the connection status (for
example, to perform some action when the user connects to the network the next time
or, on the contrary, to stop receiving data from the net when the user hangs up the
modem). For this, you need to use one of the event macros described below.

This class is different from other wxWindows classes in that there is at most one
instance of this class in the program accessed via wxDialUpManager::Create() (p. 322)
and you can't create the objects of this class directly.

Derived from

No base class

Include files

<wx/dialup.h>

Event table macros

To be notified about the change in the network connection status, use these event
handler macros to direct input to member functions that take a wxDialUpEvent (p. 320)

argument.

EVT_DIALUP_CONNECTED(func) A connection with the network was established.
EVT_DIALUP_DISCONNECTED(func) The connection with the network was lost.

321

CHAPTER 5

See also

dialup sample (p. 1328)
wxDialUpEvent (p. 320)

wxDialUpManager::Create

wxDialUpManager* Create()

This function should create and return the object of the platform-specific class derived
from wxDialUpManager. You should delete the pointer when you are done with it.

wxDialUpManager::1sOk

bool IsOk() const
Returns TRUE if the dialup manager was initialized correctly. If this function returns

FALSE, no other functions will work neither, so it is a good idea to call this function and
check its result before calling any other wxDialUpManager methods

wxDialUpManager::~wxDialUpManager

~wxDialUpManager()

Destructor.

wxDialUpManager::GetISPNames

size_t GetISPNames(wxArrayString& names) const
This function is only implemented under Windows.
Fills the array with the names of all possible values for the first parameter to Dial() (p.

322) on this machine and returns their number (may be 0).

wxDialUpManager::Dial

bool Dial(const wxString& nameOfISP = wxEmptyString, const wxString& username
= wxEmptyString, const wxString& password = wxEmptyString, bool async = TRUE)

Dial the given ISP, use username and password to authentificate.

The parameters are only used under Windows currently, for Unix you should use

322

CHAPTER 5

SetConnectCommand (p. 325) to customize this functions behaviour.

If no nameOfISP is given, the function will select the default one (proposing the user to
choose among all connections defined on this machine) and if no username and/or

password are given, the function will try to do without them, but will ask the user if really
needed.

If async parameter is FALSE, the function waits until the end of dialing and returns TRUE
upon successful completion.

If async is TRUE, the function only initiates the connection and returns immediately - the

result is reported via events (an event is sent anyhow, but if dialing failed it will be a
DISCONNECTED one).

wxDialUpManager::IsDialing

bool IsDialing() const
Returns TRUE if (async) dialing is in progress.
See also

Dial (p. 322)

wxDialUpManager::CancelDialing

bool CancelDialing()

Cancel dialing the number initiated with Dial (p. 322) with async parameter equal to
TRUE.

Note that this won't result in DISCONNECTED event being sent.
See also

IsDialing (p. 323)

wxDialUpManager::HangUp

bool HangUp()

Hang up the currently active dial up connection.

wxDialUpManager::IsAlwaysOnline

bool IsAlwaysOnline() const

323

CHAPTER 5

Returns TRUE if the computer has a permanent network connection (i.e. is on a LAN)
and so there is no need to use Dial() function to go online.

NB: this functions tries to guess the result and it is not always guaranteed to be correct,
so it is better to ask user for confirmation or give him a possibility to override it.

wxDialUpManager::IsOnline

bool I1sOnline() const
Returns TRUE if the computer is connected to the network: under Windows, this just

means that a RAS connection exists, under Unix we check that the "well-known host"
(as specified by SetWellKknownHost (p. 325)) is reachable.

wxDialUpManager::SetOnlineStatus

void SetOnlineStatus(bool isOnline = TRUE)

Sometimes the built-in logic for determining the online status may fail, so, in general, the
user should be allowed to override it. This function allows to forcefully set the online
status - whatever our internal algorithm may think about it.

See also

IsOnline (p. 324)

wxDialUpManager::EnableAutoCheckOnlineStatus

bool EnableAutoCheckOnlineStatus(size_t nSeconds = 60)

Enable automatical checks for the connection status and sending of

WX EVT_DI ALUP_CONNECTEDY wxEVT_DI ALUP_DI SCONNECTED events. The interval
parameter is only for Unix where we do the check manually and specifies how often
should we repeat the check (each minute by default). Under Windows, the natification
about the change of connection status is sent by the system and so we don't do any
polling and this parameter is ignored.

Returns FALSE if couldn't set up automatic check for online status.

wxDialUpManager::DisableAutoCheckOnlineStatus

void DisableAutoCheckOnlineStatus()

Disable automatic check for connection status change - notice that
thewx EVT_DI ALUP_XXX events won't be sent any more neither.

324

CHAPTER 5

wxDialUpManager::SetWellKnownHost

void SetWellKnownHost(const wxString& hostname, int portno = 80)

This method is for Unix only.

Under Unix, the value of well-known host is used to check whether we're connected to
the internet. It is unused under Windows, but this function is always safe to call. The
default value is ww. yahoo. com 80.

wxDialUpManager::SetConnectCommand

SetConnectCommand(const wxString& commandDial = wxT("/usr/bin/pon™), const
wxString& commandHangup = wxT("/usr/bin/poff"))

This method is for Unix only.

Sets the commands to start up the network and to hang up again.

See also

Dial (p. 322)

wxDir

wxDir is a portable equivalent of Unix open/read/closedir functions which allow
enumerating of the files in a directory. wxDir allows enumerate files as well as
directories.

Example of use:
wxDi r dir(wxGetowd());
if (!'dir.lsOpened())
/] deal with the error here - wxDir would already | og an error

message

/1 explaining the exact reason of the failure
return;

}

put s("Enunerating object files in current directory:");

wxString fil enane;

325

CHAPTER 5

bool cont = dir.GetFirst(&filenane, filespec, flags);
while (cont)

printf("%\n", filenanme.c_str());

cont = dir. GetNext (& il enane);
}

Derived from
No base class

Constants

These flags define what kind of filenames is included in the list of files enumerated by

GetFirst/GetNext

enum

{
wxDl R_FI LES = 0x0001, /1 include files
wxDl R_DI RS = 0x0002, /1 include directories
wxDlI R_HI DDEN = 0x0004, /1 include hidden files
wx DI R_DOTDOT = 0x0008, /1 include '.' and '..'
/1 by default, enunerate everything except '.' and '..'
wxDI R DEFAULT = wxDIR FILES | wxDIR DIRS | wxDI R_HI DDEN

}

Include files

<wx/dir.h>

wxDir::Exists

static bool Exists(const wxString& dir)

Test for existence of a directory with the given name

wxDir::wxDir

wxDir()
Default constructor, use Open() (p. 327) afterwards.

wxDir(const wxString& dir)

326

CHAPTER 5

Opens the directory for enumeration, use IsOpened() (p. 327) to test for errors.

wxDir::~wxDir

~wxDir()

Destructor cleans up the associated ressources. It is not virtual and so this class is not
meant to be used polymorphically.

wxDir::Open

bool Open(const wxString& dir)

Open the directory for enumerating, returns TRUE on success or FALSE if an error
occurred.

wxDir::IsOpened

bool IsOpened() const

Returns TRUE if the directory was successfully opened by a previous call to Open (p.
327).

wxDir::GetFirst

bool GetFirst(wxString* filename, const wxString& filespec = wxEmptyString, int
flags = wxDIR_DEFAULT) const

Start enumerating all files matching filespec (or all files if it is empty) and flags, return
TRUE on success.

wxDir::GetNext

bool GetNext(wxString* filename) const

Continue enumerating files satisfying the criteria specified by the last call to GetFirst (p.
327).

wxDirDialog

327

CHAPTER 5

This class represents the directory chooser dialog.
Derived from

wxDialog (p. 312)

wxWindow (p. 1190)

wxEvtHandler (p. 380)

wxObiject (p. 750)

Include files

<wx/dirdlg.h>

See also

wxDirDialog overview (p. 1409), wxFileDialog (p. 410)

wxDirDialog::wxDirDialog

wxDirDialog(wxWindow* parent, const wxString& message = "Choose a directory”,
const wxString& defaultPath = ™, long style = 0, const wxPoint& pos =
wxDefaultPosition)

Constructor. Use wxDirDialog::ShowModal (p. 329) to show the dialog.

Parameters

parent
Parent window.

message
Message to show on the dialog.

defaultPath
The default path, or the empty string.

style
A dialog style, currently unused.

pos
Dialog position. Not implemented.

wxDirDialog::~wxDirDialog

~wxDirDialog()

328

CHAPTER 5

Destructor.

wxDirDialog::GetPath

wxString GetPath() const

Returns the default or user-selected path.

wxDirDialog::GetMessage

wxString GetMessage() const

Returns the message that will be displayed on the dialog.

wxDirDialog::GetStyle

long GetStyle() const

Returns the dialog style.

wxDirDialog::SetMessage

void SetMessage(const wxString& message)

Sets the message that will be displayed on the dialog.

wxDirDialog::SetPath

void SetPath(const wxString& path)

Sets the default path.

wxDirDialog::SetStyle

void SetStyle(long style)

Sets the dialog style. This is currently unused.

wxDirDialog::ShowModal

int ShowModal()

329

CHAPTER 5

Shows the dialog, returning wxID_OK if the user pressed OK, and wxOK_CANCEL
otherwise.

wxDllLoader

wxDlILoader is a class providing an interface similar to Unix's dl open() . It is used by
the wxLibrary framework and manages the actual loading of shared libraries and the
resolving of symbols in them. There are no instances of this class, it simply serves as a
namespace for its static member functions.

The terms DLL and shared library/object will both be used in the documentation to refer
to the same thing: a . dI | file under Windows or . so or . s| one under Unix.

Example of using this class to dynamically load st r | en() function:

#i f defined(__WKMBW_)
static const wxChar *LIB _NAME = _T("kernel 32");
static const wxChar *FUNC_NAME = _T("IstrlenA");
#elif defined(__UNI X_)
static const wxChar *LIB NAME = _T("/lib/libc-2.0.7.s0");
static const wxChar *FUNC_NAME = _T("strlen");
#endi f

wxDl | Type dl | Handl e = wxDi | Loader : : LoadLi brary(LI B_NAVE) ;
if (!'dIHandle)
{

}

el se

{

error

typedef int (*strlenType)(char *);
strlenType pfnStrlen =

(strlenType)wxDl | Loader: : Get Synbol (dI | Handl e, FUNC_NAME) ;
if (!'pfnStrien)

{
error
}
el se
{
if (pfnStrlien("foo") !'=3)
error
}
el se
{
ok!
}
}

wxDl | Loader : : Unl oadLi brary(dl | Handl e) ;

330

CHAPTER 5

Derived from
No base class
Include files
<wx/dynlib.h>
Data structures

This header defines a platfrom-dependent wxDl | Type typedef which stores a handle to
a loaded DLLs on the given platform.

wxDlIlILoader::GetDIIExt

static wxString GetDIIEXxt()

Returns the string containing the usual extension for shared libraries for the given
systems (including the leading dot if not empty).

For example, this function will return ™ . dl | "
Unix.

under Windows or (usually) " . so" under

wxDllLoader::GetProgramHandle

wxDIIType GetProgramHandle()

This function returns a valid handle for the main program itself. Notice that the NULL
return value is valid for some systems (i.e. doesn't mean that the function failed).

NB: This function is Unix specific. It will always fail under Windows or OS/2.

wxDllLoader::GetSymbol

void * GetSymbol(wxDIIType dlIHandle, const wxString& name)
This function resolves a symbol in a loaded DLL, such as a variable or function name.

Returned value will be NULL if the symbol was not found in the DLL or if an error
occured.

Parameters

dliHandle

331

CHAPTER 5

Valid handle previously returned by LoadLibrary (p. 332)

name
Name of the symbol.

wxDIlILoader::LoadLibrary

wxDIIType LoadLibrary(const wxString & libname, bool* success = NULL)

This function loads a shared library into memory, with liboname being the name of the
library: it may be either the full name including path and (platform-dependent)
extenesion, just the basename (no path and no extension) or a basename with
extentsion. In the last two cases, the library will be searched in all standard locations.

Returns a handle to the loaded DLL. Use success parameter to test if it is valid. If the
handle is valid, the library must be unloaded later with UnloadLibrary (p. 332).

Parameters

libname
Name of the shared object to load.

success

May point to a bool variable which will be set to TRUE or FALSE; may also be
NULL.

wxDllLoader::UnloadLibrary

void UnloadLibrary(wxDIIType dllhandle)

This function unloads the shared library. The handle dllhandle must have been returned
by LoadLibrary (p. 332) previously.

wxDocChildFrame

The wxDocChildFrame class provides a default frame for displaying documents on
separate windows. This class can only be used for SDI (not MDI) child frames.

The class is part of the document/view framework supported by wxWindows, and
cooperates with the wxView (p. 1184), wxDocument (p. 353), wxDocManager (p. 334)
and wxDocTemplate (p. 348) classes.

See the example application in sanpl es/ docvi ew.

Derived from

332

CHAPTER 5

wxFrame (p. 454)
wxWindow (p. 1190)
wxEvtHandler (p. 380)
wxObiject (p. 750)
Include files
<wx/docview.h>

See also

Document/view overview (p. 1410), wxFrame (p. 454)

wxDocChildFrame::m_childDocument

wxDocument* m_childDocument

The document associated with the frame.

wxDocChildFrame::m_childView

wxView* m_childView

The view associated with the frame.

wxDocChildFrame::wxDocChildFrame

wxDocChildFrame(wxDocument* doc, wxView* view, wxFrame* parent,
wxWindowID id, const wxString& title, const wxPoint& pos = wxDefaultPosition,
const wxSize& size = wxDefaultSize, long style = wxDEFAULT_FRAME_STYLE,
const wxString& name = "frame")

Constructor.

wxDocChildFrame::~wxDocChildFrame

~wxDocChildFrame()

Destructor.

wxDocChildFrame::GetDocument

wxDocument* GetDocument() const

333

CHAPTER 5

Returns the document associated with this frame.

wxDocChildFrame::GetView

wxView* GetView() const

Returns the view associated with this frame.

wxDocChildFrame::OnActivate

void OnActivate(wxActivateEvent event)

Sets the currently active view to be the frame's view. You may need to override (but still

call) this function in order to set the keyboard focus for your subwindow.

wxDocChildFrame::OnCloseWindow

void OnCloseWindow(wxCloseEvent& event)

Closes and deletes the current view and document.

wxDocChildFrame::SetDocument

void SetDocument(wxDocument *doc)

Sets the document for this frame.

wxDocChildFrame::SetView

void SetView(wxView *view)

Sets the view for this frame.

wxDocManager

The wxDocManager class is part of the document/view framework supported by
wxWindows, and cooperates with the wxView (p. 1184), wxDocument (p. 353) and
wxDocTemplate (p. 348) classes.

Derived from

334

CHAPTER 5

wxEvtHandler (p. 380)
wxObiject (p. 750)

Include files
<wx/docview.h>
See also

wxDocManager overview (p. 1413), wxDocument (p. 353), wxView (p. 1184),
wxDocTemplate (p. 348), wxFileHistory (p. 416)

wxDocManager::m_currentView

wxView* m_currentView

The currently active view.

wxDocManager::m_defaultDocumentNameCounter

int m_defaultDocumentNameCounter

Stores the integer to be used for the next default document name.

wxDocManager::m_fileHistory

wxFileHistory* m_fileHistory

A pointer to an instance of wxFileHistory (p. 416), which manages the history of recently-
visited files on the File menu.

wxDocManager::m_maxDocsOpen

int m_maxDocsOpen

Stores the maximum number of documents that can be opened before existing
documents are closed. By default, this is 10,000.

wxDocManager::m_docs

wxList m_docs

A list of all documents.

335

CHAPTER 5

wxDocManager::m_flags

long m_flags

Stores the flags passed to the constructor.

wxDocManager::m_lastDirectory

The directory last selected by the user when opening a file.

wxFileHistory* m_fileHistory

wxDocManager::m_templates

wxList mnTemplates

A list of all document templates.

wxDocManager::wxDocManager

void wxDocManager(long flags = wxDEFAULT_DOCMAN_FLAGS, bool initialize =
TRUE)

Constructor. Create a document manager instance dynamically near the start of your
application before doing any document or view operations.

flags is currently unused.
If initialize is TRUE, the Initialize (p. 340) function will be called to create a default history
list object. If you derive from wxDocManager, you may wish to call the base constructor

with FALSE, and then call Initialize in your own constructor, to allow your own Initialize
or OnCreateFileHistory functions to be called.

wxDocManager::~wxDocManager

void ~wxDocManager()

Destructor.

wxDocManager::ActivateView

void ActivateView(wxView* doc, bool activate, bool deleting)

336

CHAPTER 5

Sets the current view.

wxDocManager::AddDocument

void AddDocument(wxDocument *doc)

Adds the document to the list of documents.

wxDocManager::AddFileToHistory

void AddFileToHistory(const wxString& filename)

Adds a file to the file history list, if we have a pointer to an appropriate file menu.

wxDocManager::AssociateTemplate

void AssociateTemplate(wxDocTemplate *temp)

Adds the template to the document manager's template list.

wxDocManager::CreateDocument

wxDocument* CreateDocument(const wxString& path, long flags)
Creates a new document in a manner determined by the flags parameter, which can be:

wxDOC_NEW Creates a fresh document.
wxDOC_SILENT Silently loads the given document file.

If wxDOC_NEW is present, a new document will be created and returned, possibly after
asking the user for a template to use if there is more than one document template. If
wxDOC_SILENT is present, a new document will be created and the given file loaded
into it. If neither of these flags is present, the user will be presented with a file selector
for the file to load, and the template to use will be determined by the extension
(Windows) or by popping up a template choice list (other platforms).

If the maximum number of documents has been reached, this function will delete the
oldest currently loaded document before creating a new one.

wxDocManager::CreateView

wxView* CreateView(wxDocument*doc, long flags)

Creates a new view for the given document. If more than one view is allowed for the

337

CHAPTER 5

document (by virtue of multiple templates mentioning the same document type), a choice
of view is presented to the user.

wxDocManager::DisassociateTemplate

void DisassociateTemplate(wxDocTemplate *temp)

Removes the template from the list of templates.

wxDocManager::FileHistoryAddFilesToMenu

void FileHistoryAddFilesToMenu()
Appends the files in the history list, to all menus managed by the file history object.
void FileHistoryAddFilesToMenu(wxMenu* menu)

Appends the files in the history list, to the given menu only.

wxDocManager::FileHistoryLoad

void FileHistoryLoad(wxConfigBase& config)
Loads the file history from a config object.
See also

wxConfig (p. 162)

wxDocManager::FileHistoryRemoveMenu

void FileHistoryRemoveMenu(wxMenu* menu)

Removes the given menu from the list of menus managed by the file history object.

wxDocManager::FileHistorySave

void FileHistorySave(wxConfigBase& resourceFile)

Saves the file history into a config object. This must be called explicitly by the
application.

See also

wxConfig (p. 162)

338

CHAPTER 5

wxDocManager::FileHistoryUseMenu

void FileHistoryUseMenu(wxMenu* menu)

Use this menu for appending recently-visited document filenames, for convenient
access. Calling this function with a valid menu pointer enables the history list
functionality.

Note that you can add multiple menus using this function, to be managed by the file
history object.

wxDocManager::FindTemplateForPath

wxDocTemplate * FindTemplateForPath(const wxString& path)

Given a path, try to find template that matches the extension. This is only an
approximate method of finding a template for creating a document.

wxDocManager::GetCurrentDocument

wxDocument * GetCurrentDocument()

Returns the document associated with the currently active view (if any).

wxDocManager::GetCurrentView

wxView * GetCurrentView()

Returns the currently active view

wxDocManager::GetDocuments

wxList& GetDocuments()

Returns a reference to the list of documents.

wxDocManager::GetFileHistory

wxFileHistory * GetFileHistory()

Returns a pointer to file history.

339

CHAPTER 5

wxDocManager::GetLastDirectory

wxString GetLastDirectory() const

Returns the directory last selected by the user when opening a file. Initially empty.

wxDocManager::GetMaxDocsOpen

int GetMaxDocsOpen()

Returns the number of documents that can be open simultaneously.

wxDocManager::GetNoHistoryFiles

int GetNoHistoryFiles()

Returns the number of files currently stored in the file history.

wxDocManager::Initialize

bool Initialize()

Initializes data; currently just calls OnCreateFileHistory. Some data cannot always be
initialized in the constructor because the programmer must be given the opportunity to
override functionality. If OnCreateFileHistory was called from the constructor, an
overridden virtual OnCreateFileHistory would not be called due to C++'s ‘interesting’
constructor semantics. In fact Initialize is called from the wxDocManager constructor, but
this can be vetoed by passing FALSE to the second argument, allowing the derived
class's constructor to call Initialize, possibly calling a different OnCreateFileHistory from
the default.

The bottom line: if you're not deriving from Initialize, forget it and construct
wxDocManager with no arguments.

wxDocManager::MakeDefaultName

bool MakeDefaultName(const wxString& buf)

Copies a suitable default name into buf. This is implemented by appending an integer
counter to the string unnamed and incrementing the counter.

wxDocManager::OnCreateFileHistory

340

CHAPTER 5

wxFileHistory * OnCreateFileHistory()

A hook to allow a derived class to create a different type of file history. Called from
Initialize (p. 340).

wxDocManager::OnFileClose

void OnFileClose()

Closes and deletes the currently active document.

wxDocManager::OnFileNew

void OnFileNew()

Creates a document from a list of templates (if more than one template).

wxDocManager::OnFileOpen

void OnFileOpen()

Creates a new document and reads in the selected file.

wxDocManager::OnFileSave

void OnFileSave()

Saves the current document by calling wxDocument::Save for the current document.

wxDocManager::OnFileSaveAs

void OnFileSaveAs()

Calls wxDocument::SaveAs for the current document.

wxDocManager::OnMenuCommand

void OnMenuCommand(int cmd)

Processes menu commands routed from child or parent frames. This deals with the
following predefined menu item identifiers:

wxID_OPEN Creates a new document and opens a file into it.

341

CHAPTER 5

wxID_CLOSE Closes the current document.

wxID_NEW Creates a new document.

wxID_SAVE Saves the document.

wxID_SAVE_AS Saves the document into a specified filename.

Unrecognized commands are routed to the currently active wxView's
OnMenuCommand.

wxDocManager::RemoveDocument

void RemoveDocument(wxDocument *doc)

Removes the document from the list of documents.

wxDocManager::SelectDocumentPath

wxDocTemplate * SelectDocumentPath(wxDocTemplate **templates, int
noTemplates, const wxString& path, const wxString& bufSize, long flags, bool save)

Under Windows, pops up a file selector with a list of filters corresponding to document
templates. The wxDocTemplate corresponding to the selected file's extension is
returned.

On other platforms, if there is more than one document template a choice list is popped
up, followed by a file selector.

This function is used in wxDocManager::CreateDocument.

wxDocManager::SelectDocumentType

wxDocTemplate * SelectDocumentType(wxDocTemplate **templates, int
noTemplates)

Returns a document template by asking the user (if there is more than one template).
This function is used in wxDocManager::CreateDocument.

wxDocManager::SelectViewType

wxDocTemplate * SelectViewType(wxDocTemplate **templates, int noTemplates)

Returns a document template by asking the user (if there is more than one template),
displaying a list of valid views. This function is used in wxDocManager::CreateView. The
dialog normally won't appear because the array of templates only contains those
relevant to the document in question, and often there will only be one such.

342

CHAPTER 5

wxDocManager::SetLastDirectory

void SetLastDirectory(const wxString& dir)

Sets the directory to be displayed to the user when opening a file. Initially this is empty.

wxDocManager::SetMaxDocsOpen

void SetMaxDocsOpen(int n)

Sets the maximum number of documents that can be open at a time. By default, this is
10,000. If you set it to 1, existing documents will be saved and deleted when the user
tries to open or create a new one (similar to the behaviour of Windows Write, for

example). Allowing multiple documents gives behaviour more akin to MS Word and
other Multiple Document Interface applications.

wxDocMDIChildFrame

The wxDocMDIChildFrame class provides a default frame for displaying documents on
separate windows. This class can only be used for MDI child frames.

The class is part of the document/view framework supported by wxWindows, and
cooperates with the wxView (p. 1184), wxDocument (p. 353), wxDocManager (p. 334)
and wxDocTemplate (p. 348) classes.

See the example application in sanpl es/ docvi ew.

Derived from

wxMDIChildFrame (p. 670)

wxFrame (p. 454)

wxWindow (p. 1190)

wxEvtHandler (p. 380)

wxObiject (p. 750)

Include files

<wx/docmdi.h>

See also

Document/view overview (p. 1410), wxMDIChildFrame (p. 670)

wxDocMDIChildFrame::m_childDocument

343

CHAPTER 5

wxDocument* m_childDocument

The document associated with the frame.

wxDocMDIChildFrame::m_childView

wxView* m_childView

The view associated with the frame.

wxDocMDIChildFrame::wxDocMDIChildFrame

wxDocMDIChildFrame(wxDocument* doc, wxView* view, wxFrame* parent,
wxWindowID id, const wxString& title, const wxPoint& pos = wxDefaultPosition,
const wxSize& size = wxDefaultSize, long style = wxDEFAULT_FRAME_STYLE,
const wxString& name = "frame")

Constructor.

wxDocMDIChildFrame::~wxDocMDIChildFrame

~wxDocMDIChildFrame()

Destructor.

wxDocMDIChildFrame::GetDocument

wxDocument* GetDocument() const

Returns the document associated with this frame.

wxDocMDIChildFrame::GetView

wxView* GetView() const

Returns the view associated with this frame.

wxDocMDIChildFrame::OnActivate

void OnActivate(wxActivateEvent event)

Sets the currently active view to be the frame's view. You may need to override (but still
call) this function in order to set the keyboard focus for your subwindow.

CHAPTER 5

wxDocMDIChildFrame::OnCloseWindow

void OnCloseWindow(wxCloseEvent& event)

Closes and deletes the current view and document.

wxDocMDIChildFrame::SetDocument

void SetDocument(wxDocument *doc)

Sets the document for this frame.

wxDocMDIChildFrame::SetView

void SetView(wxView *view)

Sets the view for this frame.

wxDocMDIParentFrame

The wxDocMDIParentFrame class provides a default top-level frame for applications
using the document/view framework. This class can only be used for MDI parent frames.

It cooperates with the wxView (p. 1184), wxDocument (p. 353), wxDocManager (p. 334)
and wxDocTemplates (p. 348) classes.

See the example application in sanpl es/ docvi ew.
Derived from

wxMDIParentFrame (p. 675)

wxFrame (p. 454)

wxWindow (p. 1190)

wxEvtHandler (p. 380)

wxObiject (p. 750)

Include files

<wx/docmdi.h>

See also

Document/view overview (p. 1410), wxMDIParentFrame (p. 675)

345

CHAPTER 5

wxDocMDIParentFrame::wxDocMDIParentFrame

wxDocParentFrame(wxDocManager* manager, wxFrame *parent, wxWindowID id,
const wxString& title, const wxPoint& pos = wxDefaultPosition, const wxSize& size =
wxDefaultSize, long style = wxDEFAULT_FRAME_STYLE, const wxString& name =
"frame")

Constructor.

wxDocMDIParentFrame::~wxDocMDIParentFrame

~wxDocMDIParentFrame()

Destructor.

wxDocMDIParentFrame::OnCloseWindow

void OnCloseWindow(wxCloseEvent& event)

Deletes all views and documents. If no user input cancelled the operation, the frame will
be destroyed and the application will exit.

Since understanding how document/view clean-up takes place can be difficult, the
implementation of this function is shown below.

voi d wxDocPar ent Frane: : OnC oseW ndow wxC oseEvent & event)

i f (mdocManager->C ear(!event. CanVeto()))

{
t hi s->Destroy();

}

el se
event. Veto();

wxDocParentFrame

The wxDocParentFrame class provides a default top-level frame for applications using
the document/view framework. This class can only be used for SDI (not MDI) parent
frames.

It cooperates with the wxView (p. 1184), wxDocument (p. 353), wxDocManager (p. 334)

346

CHAPTER 5

and wxDocTemplates (p. 348) classes.

See the example application in sanpl es/ docvi ew.
Derived from

wxFrame (p. 454)

wxWindow (p. 1190)

wxEvtHandler (p. 380)

wxObiject (p. 750)

Include files

<wx/docview.h>

See also

Document/view overview (p. 1410), wxFrame (p. 454)

wxDocParentFrame::wxDocParentFrame

wxDocParentFrame(wxDocManager* manager, wxFrame *parent, wxWindowID id,
const wxString& title, const wxPoint& pos = wxDefaultPosition, const wxSize& size =
wxDefaultSize, long style = wxDEFAULT_FRAME_STYLE, const wxString& name =
"frame")

Constructor.

wxDocParentFrame::~wxDocParentFrame

~wxDocParentFrame()

Destructor.

wxDocParentFrame::OnCloseWindow

void OnCloseWindow(wxCloseEvent& event)

Deletes all views and documents. If no user input cancelled the operation, the frame will
be destroyed and the application will exit.

Since understanding how document/view clean-up takes place can be difficult, the
implementation of this function is shown below.

voi d wxDocPar ent Frane: : OnC oseW ndow wxC oseEvent & event)

347

CHAPTER 5

{
i f (mdocManager->C ear(!event. CanVeto()))

t hi s->Destroy();
}

el se
event. Veto();

wxDocTemplate

The wxDocTemplate class is used to model the relationship between a document class

and a view class.
Derived from
wxObiject (p. 750)
Include files
<wx/docview.h>
See also

wxDocTemplate overview (p. 1413), wxDocument (p. 353), wxView (p. 1184)

wxDocTemplate::m_defaultExt

wxString m_defaultExt

The default extension for files of this type.

wxDocTemplate::m_description

wxString m_description

A short description of this template.

wxDocTemplate::m_directory

wxString m_directory

The default directory for files of this type.

348

CHAPTER 5

wxDocTemplate::m_docClassinfo

wxClassinfo* m_docClassinfo

Run-time class information that allows document instances to be constructed
dynamically.

wxDocTemplate::m_docTypeName

wxString m_docTypeName

The named type of the document associated with this template.

wxDocTemplate::m_documentManager

wxDocTemplate* m_documentManager

A pointer to the document manager for which this template was created.

wxDocTemplate::m_fileFilter

wxString m_fileFilter

The file filter (such as *. t xt) to be used in file selector dialogs.

wxDocTemplate::m_flags

long m_flags

The flags passed to the constructor.

wxDocTemplate::m_viewClassinfo

wxClassInfo* m_viewClassInfo

Run-time class information that allows view instances to be constructed dynamically.

wxDocTemplate::m_viewTypeName

wxString m_viewTypeName

349

CHAPTER 5

The named type of the view associated with this template.

wxDocTemplate::wxDocTemplate

wxDocTemplate(wxDocManager* manager, const wxString& descr, const
wxString& filter, const wxString& dir, const wxString& ext, const wxString&
docTypeName, const wxString& viewTypeName, wxClassInfo* docClassinfo = NULL,
wxClassInfo* viewClassIinfo = NULL, long flags = wxDEFAULT_TEMPLATE_FLAGS)

Constructor. Create instances dynamically near the start of your application after
creating a wxDocManager instance, and before doing any document or view operations.

manager is the document manager object which manages this template.

descr is a short description of what the template is for. This string will be displayed in the
file filter list of Windows file selectors.

filter is an appropriate file filter such as *. t xt .
dir is the default directory to use for file selectors.
ext is the default file extension (such as txt).

docTypeName is a name that should be unique for a given type of document, used for
gathering a list of views relevant to a particular document.

viewTypeName is a name that should be unique for a given view.

docClasslinfo is a pointer to the run-time document class information as returned by the
CLASSINFO macro, e.g. CLASSINFO(MyDocumentClass). If this is not supplied, you
will need to derive a new wxDocTemplate class and override the CreateDocument
member to return a new document instance on demand.

viewClassiInfo is a pointer to the run-time view class information as returned by the
CLASSINFO macro, e.g. CLASSINFO(MyViewClass). If this is not supplied, you will
need to derive a new wxDocTemplate class and override the CreateView member to
return a new view instance on demand.

flags is a bit list of the following:

WXTEMPLATE_VISIBLE The template may be displayed to the user in dialogs.
WXTEMPLATE_INVISIBLE The template may not be displayed to the user in
dialogs.

WXDEFAULT_TEMPLATE_FLAGS Defined as wxTEMPLATE_VISIBLE.

wxDocTemplate::~wxDocTemplate

void ~wxDocTemplate()

350

CHAPTER 5

Destructor.

wxDocTemplate::CreateDocument

wxDocument * CreateDocument(const wxString& path, long flags = 0)
Creates a new instance of the associated document class. If you have not supplied a

wxClassInfo parameter to the template constructor, you will need to override this
function to return an appropriate document instance.

wxDocTemplate::CreateView

wxView * CreateView(wxDocument *doc, long flags = 0)
Creates a new instance of the associated view class. If you have not supplied a

wxClassInfo parameter to the template constructor, you will need to override this
function to return an appropriate view instance.

wxDocTemplate::GetDefaultExtension

wxString GetDefaultExtension()

Returns the default file extension for the document data, as passed to the document
template constructor.

wxDocTemplate::GetDescription

wxString GetDescription()

Returns the text description of this template, as passed to the document template
constructor.

wxDocTemplate::GetDirectory

wxString GetDirectory()

Returns the default directory, as passed to the document template constructor.

wxDocTemplate::GetDocumentManager

wxDocManager * GetDocumentManager()

351

CHAPTER 5

Returns a pointer to the document manager instance for which this template was
created.

wxDocTemplate::GetDocumentName

wxString GetDocumentName()

Returns the document type name, as passed to the document template constructor.

wxDocTemplate::GetFileFilter

wxString GetFileFilter()

Returns the file filter, as passed to the document template constructor.

wxDocTemplate::GetFlags

long GetFlags()

Returns the flags, as passed to the document template constructor.

wxDocTemplate::GetViewName

wxString GetViewName()

Returns the view type name, as passed to the document template constructor.

wxDocTemplate::IsVisible

bool IsVisible()

Returns TRUE if the document template can be shown in user dialogs, FALSE
otherwise.

wxDocTemplate::SetDefaultExtension

void SetDefaultExtension(const wxString& ext)

Sets the default file extension.

wxDocTemplate::SetDescription

352

CHAPTER 5

void SetDescription(const wxString& descr)

Sets the template description.

wxDocTemplate::SetDirectory

void SetDirectory(const wxString& dir)

Sets the default directory.

wxDocTemplate::SetDocumentManager

void SetDocumentManager(wxDocManager *manager)

Sets the pointer to the document manager instance for which this template was created.
Should not be called by the application.

wxDocTemplate::SetFileFilter

void SetFileFilter(const wxString& filter)

Sets the file filter.

wxDocTemplate::SetFlags

void SetFlags(long flags)

Sets the internal document template flags (see the constructor description for more
details).

wxDocument

The document class can be used to model an application's file-based data. It is part of
the document/view framework supported by wxWindows, and cooperates with the
wxView (p. 1184), wxDocTemplate (p. 348) and wxDocManager (p. 334) classes.
Derived from

wxEvtHandler (p. 380)
wxObiject (p. 750)

Include files

353

CHAPTER 5

<wx/docview.h>
See also

wxDocument overview (p. 1411), wxView (p. 1184), wxDocTemplate (p. 348),
wxDocManager (p. 334)

wxDocument::m_commandProcessor

wxCommandProcessor* m_commandProcessor

A pointer to the command processor associated with this document.

wxDocument::m_documentFile

wxString m_documentFile

nn

Filename associated with this document (" if none).

wxDocument::m_documentModified

bool m_documentModified

TRUE if the document has been modified, FALSE otherwise.

wxDocument::m_documentTemplate

wxDocTemplate * m_documentTemplate

A pointer to the template from which this document was created.

wxDocument::m_documentTitle

wxString m_documentTitle

Document title. The document title is used for an associated frame (if any), and is
usually constructed by the framework from the filename.

wxDocument::m_documentTypeName

354

CHAPTER 5

wxString m_documentTypeName

The document type nhame given to the wxDocTemplate constructor, copied to this
variable when the document is created. If several document templates are created that
use the same document type, this variable is used in wxDocManager::CreateView to
collate a list of alternative view types that can be used on this kind of document. Do not
change the value of this variable.

wxDocument::m_documentViews

wxList m_documentViews

List of wxView instances associated with this document.

wxDocument::wxDocument

wxDocument()

Constructor. Define your own default constructor to initialize application-specific data.

wxDocument::~wxDocument

~wxDocument()

Destructor. Removes itself from the document manager.

wxDocument::AddView

virtual bool AddView(wxView *view)

If the view is not already in the list of views, adds the view and calls
OnChangedViewList.

wxDocument::Close

virtual bool Close()
Closes the document, by calling OnSaveModified and then (if this returned TRUE)

OnCloseDocument. This does not normally delete the document object: use
DeleteAllViews to do this implicitly.

wxDocument::DeleteAllViews

355

CHAPTER 5

virtual bool DeleteAllViews()

Calls wxView::Close and deletes each view. Deleting the final view will implicitly delete
the document itself, because the wxView destructor calls RemoveView. This in turns
calls wxDocument::OnChangedViewList, whose default implemention is to save and
delete the document if no views exist.

wxDocument::GetCommandProcessor

wxCommandProcessor* GetCommandProcessor() const
Returns a pointer to the command processor associated with this document.

See wxCommandProcessor (p. 158).

wxDocument::GetDocumentTemplate

wxDocTemplate* GetDocumentTemplate() const

Gets a pointer to the template that created the document.

wxDocument::GetDocumentManager

wxDocManager* GetDocumentManager() const

Gets a pointer to the associated document manager.

wxDocument::GetDocumentName

wxString GetDocumentName() const

Gets the document type name for this document. See the comment for
documentTypeName (p. 354).

wxDocument::GetDocumentWindow

wxWindow* GetDocumentWindow() const

Intended to return a suitable window for using as a parent for document-related dialog
boxes. By default, uses the frame associated with the first view.

wxDocument::GetFilename

356

CHAPTER 5

wxString GetFilename() const

Gets the filename associated with this document, or " if none is associated.

wxDocument::GetFirstView

wxView * GetFirstView() const

A convenience function to get the first view for a document, because in many cases a
document will only have a single view.

See also: GetViews (p. 357)

wxDocument::GetPrintableName

virtual void GetPrintableName(wxString& name) const

Copies a suitable document name into the supplied name buffer. The default function
uses the t