
i

User Manual for wxWindows Dialog Editor Version 1.7

Julian Smart
Artificial Intelligence Applications Institute

University of Edinburgh
EH1 1HN

March 1997

i

Contents

1. Introduction ...1
1.1. Current status ..1

1.2. Future developments ...1

2. Commands...2
2.1. Dialog editor menu bar...2

2.1.1. File menu...2

2.1.2. Edit menu ..2

2.1.3. Help menu ...2

2.2. Command toolbar ..2

2.3. Tool palette..3

2.4. Resource list..3

3. Procedures ..4
3.1. Running Dialog Editor ..4

3.2. Creating a dialog..4

3.3. Using property editors..4

3.4. Saving and loading files ...4

3.5. Multi-platform development..5

4. Alphabetical class reference..6

5. Bugs ...7

6. Technical notes ...8
6.1. Overview ...8

6.1.1. Dynamic setting versus recreation..8

6.2. Resource associations...9

6.3. What needs to be done for XView and Motif...9

6.4. Files...9

Index...11

ii

Copyright notice

Copyright (c) 1996 Artificial Intelligence Applications Institute, The University of Edinburgh

Permission to use, copy, modify, and distribute this software and its documentation for any
purpose is hereby granted without fee, provided that the above copyright notice, author statement
and this permission notice appear in all copies of this software and related documentation.

THE SOFTWARE IS PROVIDED "AS-IS'' AND WITHOUT WARRANTY OF ANY KIND,
EXPRESS, IMPLIED OR OTHERWISE, INCLUDING WITHOUT LIMITATION, ANY WARRANTY
OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

IN NO EVENT SHALL THE ARTIFICIAL INTELLIGENCE APPLICATIONS INSTITUTE OR THE
UNIVERSITY OF EDINBURGH BE LIABLE FOR ANY SPECIAL, INCIDENTAL, INDIRECT OR
CONSEQUENTIAL DAMAGES OF ANY KIND, OR ANY DAMAGES WHATSOEVER
RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER OR NOT ADVISED OF
THE POSSIBILITY OF DAMAGE, AND ON ANY THEORY OF LIABILITY, ARISING OUT OF OR
IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

1

1. Introduction

The wxWindows Dialog Editor is a tool for creating dialog resource files, in .wxr format. It differs
from wxBuilder in the following respectes:

1. Scope. It is written for dialog editing only, and is therefore more convenient than
wxBuilder for this purpose.

2. File format. Dialog editor reads and writes wxWindows resource files (extension .wxr)
and has no independent file format.

3. Robustness. It is written in a more principled way than wxBuilder, and is less ambitious.
4. Ease of use. Windows are edited using the mouse or via consistent property editors,

which provide immediate visual feedback of changed properties.

Dialog Editor should be compiled and used with wxWindows 1.65 or later.

1.1. Current status

Dialog Editor currently runs under MS Windows. It has yet to be tested under Motif and XView:
see Technical notes (page 8) for a discussion of what needs to be done.

1.2. Future developments

• XView and Motif versions.
• It would be nice to have a dialog browser, showing thumbnails of all dialogs in a

particular directory.
• Maybe add a menubar editor (from wxBuilder).
• Maybe convert Windows .rc files.

2

2. Commands

2.1. Dialog editor menu bar

2.1.1. File menu

New project Creates a new project (clears index and resets project name).
New dialog Creates a new dialog resource.
Open Opens an existing resource file.
Save Saves the current resources.
Save as Saves the current resources in a named file.
Clear Clears the current resources.
Exit Exit the program.

2.1.2. Edit menu

Recreate Recreates the currently selected panel item from the underlying resource. This
may be necessary to regenerate items that cannot be changed dynamically, and
which have got out of sync with the displayed item.

Delete Deletes the currently selected resource.
Toggle edit/test mode Toggles from edit to test mode, and vice versa. Edit mode is used for

editing dialogs, test mode allows panel items to be manipulated as they will
appear to the user.

2.1.3. Help menu

Help topics Displays on-line help at the contents page.
About Displays an dialog showing the Dialog Editor version and author.

2.2. Command toolbar

The command toolbar consists of the following tools:

Clears the project.
Opens an existing resource file.
Saves the current resources.
Aligns the centre of the selected items horizontally.
Aligns the top sides of the selected items horizontally.
Aligns the bottom sides of the selected items horizontally.
Aligns the centre of the selected items vertically.
Aligns the left sides of the selected items vertically.
Aligns the right sides of the selected items vertically.
Copies the size of the first selected item to the subsequently selected item(s).
Puts the selected item(s) to the front of the display list.
Puts the selected item(s) to the back of the display list.
Invokes Dialog Editor help.

CHAPTER 2

3

2.3. Tool palette

The tool palette is used to select a type of panel item to create on the dialog. To create a new
panel item, select a tool with left-click, then left-click on the dialog to window. Select the pointer
tool to use left-click for selecting and deselecting items.

The tool palette consists of the following tools.

Click this to select/deselect items on a dialog.

Text message item.

Bitmap message item.

Text button item.

Bitmap button item.

Checkbox item.

Radiobox item.

Listbox item.

Choice item.

Single-line text item.

Multi-line text item.

Slider item.

Groupbox item.

Gauge item.

Scrollbar item.

2.4. Resource list

The resource list shows a list of the dialogs, panel items and bitmaps currently loaded in Dialog
Editor. Double-clicking on a dialog item shows the associated dialog box.

4

3. Procedures

3.1. Running Dialog Editor

To run Dialog Editor under Windows, click on the Program Manager or Explorer icon. Under
UNIX, run from the command line.

The main window shows a menu bar, command toolbar, tool palette, resource list, and status line.

3.2. Creating a dialog

To create a new dialog, click on the File: New menu item, or equivalent toolbar button. A dialog
will appear. To put a panel item on the dialog, left-click on the appropriate palette icon and then
left-click on the dialog. A new item will appear at the place you clicked.

You can edit any panel item or dialog by control-left clicking. A property editor will appear,
allowing any property to be selected and edited (see Using property editors (page 4)). You can
also edit items by right-clicking to show a menu, and then selecting Edit properties.

To move a panel item, drag the item with the left mouse button, or edit the position values in the
property editor. To resize a panel item, you can either select it by left-clicking and then dragging
on a selection handle, or edit the size values in the property editor.

You can delete items from the right-click menu, or by selecting the item and choosing Edit:
Delete from the menu bar.

3.3. Using property editors

Property editors consist of a list of properties and current values, plus controls at the top of the
editor. If the property is of an appropriate type, you can edit the value directly in the text field, and
confirm or cancel the value using the two buttons to the left of it. If the property has a predefined
range of values, such as labelFontFamily, you can see a list of permissable values by clicking on
the button labelled with an ellipsis symbol (...). This will show a listbox with possible values and
current selection. You may also be able to cycle through values by double-clicking the value in
the listbox.

Properties may have special editors appropriate to the type. Filename properties invoke the file
selector, and properties containing list of user-definable strings use a string editor.

When you change a property value, this value is immediately reflected in the dialog or panel item.
If the item allows this value to be changed dynamically, the relevant wxWindows function will be
called internally to effect the change. If the value cannot be changed dynamically, the item will be
destroyed and re-created, which means that there will be more flickering associated with some
kinds of property changes than others.

3.4. Saving and loading files

Use File: Save and File: Save as or the equivalent toolbar button to save the current dialog(s) in a
wxWindows resource file (extension .wxr).

The .wxr file can be used directly in a wxWindows program, if wxWindows resources have been
enabled when building the wxWindows library. These files can be loaded dynamically, or included
directly into program source with a #include directive. See the wxWindows user manual for
further details.

CHAPTER 3

5

3.5. Multi-platform development

.wxr files generated on one environment (e.g. Windows) can be used in another (e.g. Motif).
However, because the same panel item can have different sizes on different GUIs, the user
should be cautious in assuming that one resource file will work for all platforms. It may be better
to plan to conditionally include or load different resource files for different platforms, with spacing
modified to suit each environment.

6

4. Alphabetical class reference

To be written.

7

5. Bugs

Version 1.0

• No XView or Motif versions yet.
• In Watcom-compiled 32-bit Windows version, bitmap buttons and messages don't work

properly.
• Some panel item properties missing, e.g. wxPASSWORD, wxREADONLY.
• When dragging a selected item, other selected items should follow (to be consistent with

convention), but don't.
• wxSlider sizing a bit broken: a wxWindows problem.

8

6. Technical notes

6.1. Overview

The dialog editor is written as a library, to be invoked by other programs. As you can see,
dialoged.cc is a very small program which invokes the main window via a wxResourceManager
object. The wxResourceManager object controls the user interface and other aspects of the
dialog editor.

There is wxResourceTable object in wxResourceManager: this contains a list of all the
wxItemResources currently being edited. wxResourceTable and wxItemResource are classes
already in wxWindows, defined in wx_res.h. In order to edit a new dialog box, the dialog is
created, and the existing event handler is temporarily replaced with a new one which defines
editing functionality. This allows existing dialogs - even instances of subclasses of wxDialogBox -
to be edited, the application-specific functionality being temporarily taken over by the dialog
editor.

In order to edit the properties of a dialog box or item, a property list editor is invoked. This uses
the property classes from utils/wxprop. In order to map between properties and the actual window
API, such as SetSize and GetSize, a 'proxy' class called wxPropertyInfo has been defined, with a
subclass for each class of wxWindows window to be edited. This class defines the main members
SetProperty, GetProperty, GetPropertyNames, which transform the normal API into 'property'
terms.

Properties are mostly extracted directly from the window being edited. This is in contrast with
wxBuilder, where everything is stored in a set of parallel data structures, and windows 'properties'
only only set. However, there are exceptions to this rule in the dialog editor. There is in fact a set
of parallel objects, the wxItemResource objects which can be seen listed in the main Dialog
Editor window as a dialog is built up. These usually parallel the properties in the windows, but
occasionally this is not possible. For example, all dialog boxes being edited must be modeless: or
the user would not be able to access other windows. However, the user must be able to specify
that when used in an application, that dialog box will be modal. In this case, the value in the
wxItemResource will not match that in the actual dialog box.

There is a major problem with taking values directly from the windows: this information
sometimes does not match what went in. In Motif and XView, size values returned are not the
same as those given. This causes speedy 'degeneration' of window properties. Under Windows,
properties are almost always consistent. The other platforms will need to be catered for by relying
more on the wxItemResource objects, and not taking size information directly from windows.

6.1.1. Dynamic setting versus recreation

The property editor scheme relies on being able to set window properties dynamically: the user
changes a value, and the window changes immediately to reflect the new value. Unfortunately,
not all properties can be changed dynamically in wxWindows; for example, in Motif, the label
position must be given at panel item creation time, because the way the widgets are laid out
depend on the label position. The label position cannot then be changed without deleting and
recreating the item.

Hence the dialog editor takes two approaches: where values are dynamically settable, this is
done. Where they are not, the item is deleted and recreated, after all existing values have been
transferred into the parallel wxItemResource object. Therefore in wx_rprop.cc, some of the
SetProperty implementations have one or more call to RecreateWindowFromResource.

INDEX

9

6.2. Resource associations

wxItemResource objects (containing information about panel items and dialogs) are not visual
objects. However, they need to be associated with the visual objects when the latter are created
for editing purposes. Therefore there is a hash table called resourceAssociations in
wxResourceManager. When a window is created, the resource pointer and window pointer are
associated via the hash table. When the window is deleted, the association is removed. Children
of a dialog are associated with child wxItemResource objects by calling wxFindWindowByName
with the wxItemResource name.

6.3. What needs to be done for XView and Motif

The following areas need attention before Dialog Editor will run properly on these platforms.

1. For XView, the property editor needs to be made a modeless, not modal dialog, which
has implications for flow of control in wxPropertyInfo::Edit.

2. Properties which do not return the same value they are set to, such as width and height,
need to be stored directly in wxItemResource and not transferred from window to
wxItemResource in wxWindowPropertyInfo::InstantiateResource.

3. Properties which cannot be dynamically set in XView or Motif need to have the item
recreated (e.g. labelOrientation).

6.4. Files

The Dialog Editor source files are as follows:

• wx_rprop.h, wx_rprop.cc: handle property setting and getting through the 'proxy'
wxPropertyInfo classes and using the property list editor from utils/wxprop.

• wx_resed.h, wx_resed.cc: the main implementation, in particular the
wxResourceManager class.

• wx_reswr.cc: resource writing code.
• wx_repal.cc: the dialog editor palette implementation.
• dialoged.h, dialoged.cc: small 'stub' for invoking the user interface via a

wxResourceManager object.

INDEX

10

11

Index

—D—
Dynamic setting versus recreation, 8

—E—
Edit menu, 2

—F—
File menu, 2

—H—
Help menu, 2

