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ABSTRACT

In the fabrication of semiconductor devices using lithog-
raphy, the modeling of the exposure process is very often
needed. The elements of a typical exposure system from a
modeling perspective comprise of a radiation source, a pat-
terned mask and a wafer coated with a photo-resist. The
diffracted image of the mask pattern exposes the photo-resist
after propagating through a distance termedmask-to-wafer
gap. The exposed wafer is later on chemically developed to
form a semiconductor device. In short, the electric field prop-
agates through a series of regions (layers) with various mate-
rials and topographies (structures) before forming an image
on the wafer.

In this paper we describe a computational algorithm based
on angular spectrum propagationapproach to model image
formation in layered structures with particular emphasis to
X-ray Lithography (XRL). Several illustrative examples will
be presented.

Introduction

The modeling of X-ray Lithography (XRL) image for-
mation [1,2] is based on the Fresnel approximation of the
diffracted electric field. The complication of image forma-
tion in XRL stems from the system itself: mask topography,
absorber side-wall slope variations, non-uniformities, mate-
rials, roughness in the mask and so on. To solve all these
problems, a simulator,CXrl Toolset, based on a “layering”
approach was created. In this method, the whole system -
mask, gap, resist, wafer - is modeled as a sequence of non-
uniform layers. With this, arbitrary mask and resist struc-
tures can be modeled as long as the in-plane distribution of
the materials is known. The mask presents the most chal-
lenging problem - topography. In order to simulate this, an
“ideal” mask pattern is subjected to a sequence of transfor-
mations. Some of these transformations include rounding of
corners of a polygon, expansion or shrinking of features etc.
This structure is then modeled as a series of thin transmission
layers used in image calculations. The image is propagated
from layer to layer by using classical scattering approach. A
typical layered system is shown in above figure. In the ap-
plication of modeling to harder X-rays (like those used in
LIGA) it is necessary to take into account other effects. In
particular, X-ray fluorescence must be included. The model-
ing approach and algorithm will be discussed in detail in the
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Figure 1: Illustration of layered system

paper. An excellent agreement has been obtained with other
detailed approaches. Several applications, such as modeling
defects in masks, focusing of Fresnel zone plates etc. will be
shown to illustrate the modeling for both MEMS and ULSI
problems.

The organization of the paper is as follows. First we in-
troduce the well known concept ofangular spectrum of plane
waveswhich is used to describe diffraction in layered media.
A sequential description of the propagation of fields from the
mask plane to the wafer plane is given including the photo-
absorption of energy by the resist. Then, the computational
modeling of the resist dissolution is presented in detail. Fi-
nally, the modeling methodology is illustrated through sev-
eral case studies done using theCXrL toolset.

Diffraction in layered media

Angular Spectrum of Plane Waves

Let a monochromatic wave fieldE(x, y,0) produced by a
collection of monochromatic waves be incident on thez = 0
plane. The Fourier transform ofE(x, y,0) can be written as

FE0( fx, fy) = ‡ ‡
•

-•
E(x, y,0)e- j2p( fxx+ fyy)dxdy (1)



E(x, y,0) can be represented in terms of its Fourier transform
as

E(x, y,0) = ‡ ‡
•

-•
FE0( fx, fy)ej2p( fxx+ fyy)d fxd fy (2)

The exponential part under the integral, can be regarded as
an unit amplitude plane wave propagating in the direction

k̂ = (l fx)x̂ + (l fy)ŷ +
1

1 - (l fx)2 - (l fy)2ẑ (3)

This decomposition ofE(x, y,0) into plane waves propagat-
ing in various directions, with complex amplitudesFE0( fx, fy)
is known asangular spectrumrepresentation.

Propagation of the angular spectrum

GivenE(x, y,0) we are interested in obtaining the field at
a distancez, i.e.,E(x, y, z). SinceE(x, y, z) is assumed to be a
scalar wave field, it must satisfy Helmholtz’s equation at all
source-free points,

—2E + k2
zE = 0 (4)

SubstitutingE(x, y, z) by its angular spectrum representation
and solving the above wave equation, it can be shown that

FEz( fx, fy) = FE0( fx, fy)exp[ j(
2p
l

)
1

(1 - (l fx)2 - (l fy)2)z] (5)

whereFE0( fx, fy) is the Fourier transform of the incident
field E(x, y,0). Therefore, we can write

E(x, y, z) = ‡ ‡
•

-•
FE0( fx, fy)exp[ j(

2p
l

)
1

(1 - (l fx)2 - (l fy)2)z] (6)

which describes the propagation of the angular spectrum.
The validity ofangular spectrumpropagation has been stud-
ied by several authors and conditions for validity have been
given in [3,4].

Transmission function of a layer

Consider a planar inhomogeneous layer of thicknessd
extending fromz = 0 to z = d. At X-ray wavelengths ( 1
nm), the refractive indices of any material is complex, with
real part being close to unity and a very small imaginary part
as shown below.

ñ = n + jk (7)

Thus the effect of the propagation through a space z filled
with uniform material can be written:

exp[ j kz] = exp[-k k0z]exp[ j nk0z] (8)

The first exponential represents the attenuation due to the
propagation through a distancez, and the second the cor-
responding phase shift. Notice thatn = Re(ñ) appears ex-
plicitly in the exponential, effectively increasing the optical
thickness of the medium ton z. Finally, Eq. 8 represents
the transmission function, which is position dependent and
yields:

t(x, y) = exp[-k(x, y) k0z]exp[ j n(x, y)k0z] (9)

In this equation, bothk andn are position dependent, and can
be supplied in a bitmap form where each pixel has a trans-
mission given by Eq. 13. Notice further that all the optical
propertiesof the layerhave been collapsed into the transmis-
sion function.

Propagation through a layer

Thus the propagation of a scalar wave field through a
layer can be obtained in two steps.

• By multiplication of the incoming wave-field with the
transmission function of the layer

• Propagating the angular spectrum of the modulated wave
field through a distance equal to the thickness of the
layer.

They are described below.Assuming that the thickness of the
object is negligible, the fieldright after the object will be:

Et(x, y) = Ein(x, y)t(x, y) (10)

whereEin represents the incoming plane wave. Here, we are
implicitly applying Kirchoff boundary conditions and assum-
ing that the incoming wave field is not disturbed and that it
is only modulated. For sufficiently thin layers, this is a good
approximation [5,6].

In general, we can write the transmission of the layer us-
ing its Fourier representation:

t(x, y) = ‡ dnxdnyT(nx, ny)exp[- j2p(xnx + yny)] (11)

This is equivalent to decomposing the transmission object in
a sum of infinite diffraction gratings, specified by the fre-
quencies(nx, ny). Each will contribute to scatter the plane
wave, with a weight proportional to the componentT of the
transmission function at that frequency.

After the wave has been transmitted through the layer, it
will propagate through free-space until it reaches the image
plane, located at a distancez. Essentially nothing will happen
to the plane waves as they propagate; after moving a distance
z, the wave is described by Eq. 15. Thus, the central idea is
thata plane wave is modulated by an object of transmission
function T(x, y), filtered into a new set of plane waves which
are then propagated through free space.As stated, this rep-
resents theFresnel-Kirchoff Approximationof the diffraction
theory. In a layered media as shown in figure 1, the field is
propagated layer by layer. The diffracted field from theith
layer is the incident field for(i+1) th layer, from which the
computational scheme can be easily obtained.

Dose absorption in resist

The absorbed dose in the resist is defined as the amount of
energy absorbed per unit volume. Given a resist of thickness
Zr , the change in intensity inside the resist between depths,z
andz+ dzas a function of depthzcan be written as

dI(z,w) = I (z,w)a(w)dz (12)



wherea(w) is the absorption coefficient andI (z,w) is magni-
tude squared of the wave field atZ. I (z,w) can be expressed
as a function of the incoming intensity at the surface of the
resist as

I (z) = ‡ I (0, w)e-a(w)zdw (13)

When integrated over time we get the delivered dose (mJ/cm3).

Mathematical modeling of resist dissolution

To model the resist dissolution process, we first separate
the model space into two disjoint sets to create the “initial
front”: resist and developer; once the two regions are formed,
and then the dissolution model tracks the “developer-resist
interface” as a function of time, where the speed of the front
propagation at each grid point is a function of thedose, depth
and envelope feature sizeat that grid point. We then em-
ploy theFast Marching Level Settechnique, developed by
Sethian [7], to track the interface. In this paper, we provide
just an overview of the numerical technique; for detailed dis-
cussion of this technique, see [7].

Equations of Motion of the Front

Consider a boundary, separating one region from another,
which moves in normal direction with speedF = F(x, y, z).
Also suppose we know that the boundary is a monotonically
advancing front such atF > 0 (eg., the precondition that
resist can never be “undeveloped”). Sethian [7] shows that
this advancement problem can then be transformed into a
stationary problem where time is no longer an independent
variable. In essence, instead of solving for the front position
at each time step, we solve, at each grid point, the time when
the frontcrossedthat point.

Following the discussion in [7], letT(x, y, z) be the time
at which the boundary crosses the grid point(x, y, z). The
boundaryT(x, y, z) then satisfies the equation:

|—T(x, y, z)|R(x, y, z) = 1 (14)

This is the well knownEikonal equationfrom geometrical
optics. The position of the front,G at a timet is given by the
level set (contour) of valuet of the functionT(x, y, z), that is

G(t) = {(x, y, z)|T(x, y, z) = t} (15)

To find the front at timet, simply take the level set (contour)
of the function at timet. To solve

|—T(x, y, z)| =
1

R(x, y, z)
(16)

we use a finite difference scheme with the following gradient
operator (for an one-dimensional case):

|Tx| ª [(max(D+x
i T ,0)2 + min(D-x

i T ,0)2)]1/2 (17)

where we use the standard finite difference notation for 1-
dimensionalTx:

D0x
i T =

Ti+1 - T i - 1
2h

D-x
i T =

Ti - Ti - 1
h

D+x
i T =

Ti+1 - T i
h

Ti is the value ofT at pointih with grid spacingh.
Once we obtain the parameters needed to solve Equa-

tions 16 and 17, we follow the “Narrow Band” algorithm out-
lined by Sethian [7] to solve forT(x, y, z) on a Cartesian grid.
Once we computeT(x, y, z), we can then animate the disso-
lution process by simply “contouring” the volume at specific
time-steps.

Implementation

The exposure system is modeled using solid geometry
techniques and by slicing this system we get a layered de-
scription. The numerical code for the diffraction calculations
as well as the resist dissolution is written in C++ and inte-
grated in EXCON [8] to enable complex simulation studies;
the GUI is written in a combination of C++, Tcl and Tk, and
uses The Visualization Toolkit for 3D rendering.

Illustrative Examples

The patterning ability of X-ray lithography is best illus-
trated by considering the propagation of the diffracted image
through the gap. In figure 2, a truncated grating with mini-
mum feature size of 0.25mm is considered and the diffracted
image at various gaps is shown. Figure 3 shows the propaga-
tion of 2-dimensional fields in a layered system. Notice the
increase in contrast of the aerial images due to absorption in
the layers.

Defects in X-ray masks are caused by errors during mask
fabrication and by contamination while using the mask for
printing [9]. The effect of defects in the X-ray mask can
be easily simulated with the layered approach. An example
of a stainless steel defect present between two lines of an
absorber pattern is shown in figure 4. The developed resist
(APEX-E) is shown in figure 5.

It is well known that point sources provide an alternate
to synchrotron radiation for X-ray lithography. Point sources
are characterized by a source divergence angleqs and a global
divergence angleqg. As a result, the fields at the corners
and edges of the mask receive an oblique illumination if a
collimator is not used. The result of developing a complex
mask pattern to such an oblique illumination (20 mrads) is
shown in figures 6 and 7. Notice that the resist side-walls are
slanted.



Figure 2: Diffraction of X-rays

Extension to EUV Lithography

The modeling techniques described in this paper can be
easily adapted to the case of EUV lithography where a re-
flective mask is used. The computations are more intensive
along with the added feature that, at each interface we have
reflected fields. The details of computation of reflected im-
ages from reflective multilayer masks is presented in [10].
Figure 7(a) shows the propagation of fields within the EUV
mask for oblique incidence (10 degrees). Figure 7(b) shows
the reflected image of a square pattern (CD = 400nm). Notice
the asymmetry of edges due to oblique incidence.

Conclusions

In this paper we have described the modeling of image
formation in layered structures using the angular spectrum
propagation approach. Several examples have been presented
as application to X-ray lithography. The use of the angu-
lar spectrum approach is computationally very efficient, as
the the image propagation is carried out using Fourier trans-
forms from layer to layer. However, for very large grid sizes,
this may cause requirements for large memory. We have
implemented a new resist dissolution model that is numer-
ically stable under arbitrarily complex geometries and shows
extendibility across multiple lithographic technologies and
across application domains from very small features used in
DRAMs (£ 70nm) to very large patterns (≥ 10m) used in
MEMS devices. It is however necessary to have good char-
acterization of the resist dissolution process to be able to ac-
curately predict the final profile. Future work will focus on
better characterization of chemically amplified resist disso-
lution process, and to parameterize the dissolution rate as a

function of depth and feature size in addition to the absorbed
dose.
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(a) Mask pattern (b) Developed resist profile

Figure 3: Simulation of resist exposed by point source
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Figure 4: Image propagation from layer to layer
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(b) resist profile

Figure 5: Effect of a mask defect on developed resist

(a) SEM micrograph (K. Deguchi,
NTT)

(b) Developed profile

Figure 6: Resist dissolution over pre-existing topography I



(a) SEM micrograph (K. Deguchi,
NTT)

(b) Developed profile

Figure 7: Resist dissolution over pre-existing topography II

0 200 400 600 800 1000 1200 1400 1600 1800
0

0.5

1

1.5
C−C of reflected image

Position in nm

M
L 

st
ac

k 
&

 a
bs

or
be

r 
la

ye
rs

Fields in the EUV Mask

0 200 400 600 800 1000 1200 1400 1600 1800

50

100

150

200

250

300

(a) Propagation of field in the EUV mask

Aerial image for 5.040 incidence at exit of mask

−1000 0 1000

−1000

−500

0

500

1000

−1000 −500 0 500 1000
0

0.5

1

1.5

position in nm

C−C of Aerial image for 5.040 incidence at exit of mask

(b) Reflected image of a square pattern (CD = 400nm)

Figure 8: Extendibility of the toolset to EUV lithography


